當前位置: 首頁>>代碼示例>>Java>>正文


Java Vector2D類代碼示例

本文整理匯總了Java中de.linearbits.newtonraphson.Vector2D的典型用法代碼示例。如果您正苦於以下問題:Java Vector2D類的具體用法?Java Vector2D怎麽用?Java Vector2D使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Vector2D類屬於de.linearbits.newtonraphson包,在下文中一共展示了Vector2D類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: solve

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Solves and prints measures
 * @param object1
 * @param object2
 * @param solver
 */
private static void solve(Function2D object1, Function2D object2, NewtonRaphson2D solver, int repetitions) {
    
    Vector2D result = null;
    long start = System.currentTimeMillis();
    for (int i=0; i< repetitions; i++) {
        result = solver.solve();
    }
    
    System.out.println("\nResults");
    System.out.println("*******");
    
    DecimalFormat format = new DecimalFormat("0.000000");
    double time = (System.currentTimeMillis() - start) / (double)repetitions;
    System.out.println("Time    : " + format.format(time));
    System.out.println(solver.getMeasures());
    System.out.println("Result  : " + result);
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:24,代碼來源:Tests.java

示例2: ModelSNB

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Creates a new instance
 * 
 * @param model
 * @param histogram
 * @param config
 * @param stop
 */
ModelSNB(final ARXPopulationModel model,
         final RiskModelHistogram histogram,
         final NewtonRaphsonConfiguration<?> config,
         final WrappedBoolean stop) {

    super(histogram, model, stop, new WrappedInteger());

    // Prepare
    int[] _histogram = super.getHistogram().getHistogram();
    double c1 = super.getNumClassesOfSize(1);
    double c2 = super.getNumClassesOfSize(2);
    double k = estimateNonEmptyEquivalenceClasses(_histogram, super.getNumClasses(),
                                                  c1, super.getSamplingFraction());
    double f = getSamplingFraction();

    // Solve the maximum likelihood estimates
    Vector2D result = new NewtonRaphson2D(getObjectFunction(k, f, c1, c2),
                                          getDerivatives(k, f, c1, c2))
                                         .configure(config)
                                         .solve();

    // Compile and store
    this.uniques = k * Math.pow(result.y, result.x);
}
 
開發者ID:arx-deidentifier,項目名稱:arx,代碼行數:33,代碼來源:ModelSNB.java

示例3: getObjectFunction

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns the object function
 * 
 * @param k
 * @param f
 * @param c1
 * @param c2
 * @return
 */
private Function<Vector2D, Vector2D> getObjectFunction(final double k,
                                                       final double f,
                                                       final double c1,
                                                       final double c2) {

    return new Function<Vector2D, Vector2D>() {
        public Vector2D evaluate(Vector2D input) {
            // The derivatives of the following formulas have been obtained using Matlab
            final double a = input.x;
            final double b = input.y;
            final double dividend = (1 - f) * (1 - b);

            // Original equations to determine the value of the parameters alpha and beta in the SNB Model
            Vector2D result = new Vector2D();
            result.x = k * f * Math.pow(b / (1 - dividend), a) *
                       (((a * dividend) / (1 - dividend)) + 1) - c1;
            result.y = k * a * Math.pow(b, a) * (f * f) * (1 - b) / 2 *
                       Math.pow(1 - dividend, a + 2) *
                       (2 - (1 - a) * dividend) - c2;
            return result;
        }
    };
}
 
開發者ID:arx-deidentifier,項目名稱:arx,代碼行數:33,代碼來源:ModelSNB.java

示例4: getDerivativeFunction11

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the first derivative of the first object function:<br>
 * 6 * x
 * @return
 */
private static Function2D getDerivativeFunction11() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return 6d * input.x;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例5: getDerivativeFunction12

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the second derivative of the first object function:<br>
 * 4 * y
 * @return
 */
private static Function2D getDerivativeFunction12() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return 4d * input.y;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例6: getDerivativeFunction21

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the first derivative of the second object function:<br>
 * 8 * x
 * @return
 */
private static Function2D getDerivativeFunction21() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return 8d * input.x;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例7: getDerivativeFunction22

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the second derivative of the second object function:<br>
 * - 6 * y
 * @return
 */
private static Function2D getDerivativeFunction22() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return - 6d * input.y;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例8: getMasterFunction

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns the master function
 * @return
 */
private static Function<Vector2D, Pair<Vector2D, SquareMatrix2D>> getMasterFunction() {
    
    // Return function
    return new Function<Vector2D, Pair<Vector2D, SquareMatrix2D>>() {

        private final SquareMatrix2D                 derivatives  = new SquareMatrix2D();
        // Prepare result objects
        private final Vector2D                       object       = new Vector2D();
        private final Pair<Vector2D, SquareMatrix2D> result       = new Pair<Vector2D, SquareMatrix2D>(object, derivatives);

        /**
         * Eval
         * @param input
         * @return
         */
        public Pair<Vector2D, SquareMatrix2D> evaluate(Vector2D input) {
            
            // Prepare
            double xSquare = input.x * input.x;
            double ySquare = input.y * input.y;
            
            // Compute
            object.x = 3d * xSquare + 2d * ySquare - 35d;
            object.y = 4d * xSquare - 3d * ySquare - 24d;
            derivatives.x1 = + 6d * input.x;
            derivatives.x2 = + 4d * input.y;
            derivatives.y1 = + 8d * input.x;
            derivatives.y2 = - 6d * input.y;
            
            // Return
            return result;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:39,代碼來源:Tests.java

示例9: getObjectFunction1

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the first object function:<br>
 * 3 * x^2 + 2 * y^2 - 35 = 0 
 * @return
 */
private static Function2D getObjectFunction1() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return 3d * input.x * input.x + 2d * input.y * input.y - 35d;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例10: getObjectFunction2

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns an implementation of the second object function:<br>
 * 4 * x^2 - 3 * y^2 - 24 = 0
 * @return
 */
private static Function2D getObjectFunction2() {
    return new Function2D() {
        public Double evaluate(Vector2D input) {
            return 4d * input.x * input.x - 3d * input.y * input.y - 24d;
        }
    };
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:13,代碼來源:Tests.java

示例11: getConstraint

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns a constraint on theta
 * @return
 */
private Constraint2D getConstraint() {
    return new Constraint2D() {
        @Override
        public Boolean evaluate(Vector2D arg0) {
            return arg0.x >= 0;
        }
    };
}
 
開發者ID:arx-deidentifier,項目名稱:arx,代碼行數:13,代碼來源:ModelPitman.java

示例12: main

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Entry point
 * @param args
 */
public static void main(String[] args) {
    
    // First object function : 3 * x^2 + 2 * y^2 - 35 = 0
    // Second object function: 4 * x^2 - 3 * y^2 - 24 = 0
    //
    // This system has four solutions: (+-3, +-2)
    
    /* ****************************
     *  Solve without derivatives *
     ******************************/

    Function2D object1 = getObjectFunction1();
    Function2D object2 = getObjectFunction2();
    
    NewtonRaphson2D solver = new NewtonRaphson2D(object1, object2)
                                                 .accuracy(1e-6)
                                                 .iterationsPerTry(1000)
                                                 .iterationsTotal(100000);
    
    solve(object1, object2, solver, 1000000);

    /* *************************************************
     *  Solve without derivatives but with constraints *
     ***************************************************/

    // We want a solution in the negative range
    Constraint2D constraint = new Constraint2D(){ 
        public Boolean evaluate(Vector2D input) { 
            return input.x < 0 && input.y < 0; 
        }
    };
    
    solver = new NewtonRaphson2D(object1, object2, constraint)
                                 .accuracy(1e-6)
                                 .iterationsPerTry(1000)
                                 .iterationsTotal(100000);
    
    solve(object1, object2, solver, 1000000);
    
    /* *************************
     *  Solve with derivatives *
     ***************************/
    
    Function2D derivative11 = getDerivativeFunction11();
    Function2D derivative12 = getDerivativeFunction12();
    Function2D derivative21 = getDerivativeFunction21();
    Function2D derivative22 = getDerivativeFunction22();

    solver = new NewtonRaphson2D(object1, object2, 
                                 derivative11, derivative12,
                                 derivative21, derivative22)
                                 .accuracy(1e-6)
                                 .iterationsPerTry(1000)
                                 .iterationsTotal(100000);
    
    Function2DUtil util = new Function2DUtil();
    System.out.println("\nChecking derivatives:");
    System.out.println("Is derivative: " + util.isDerivativeFunction1(object1, derivative11, 0.01, 100, 0.001, 0.1d, 0.01d));
    System.out.println("Is derivative: " + util.isDerivativeFunction2(object1, derivative12, 0.01, 100, 0.001, 0.1d, 0.01d));
    System.out.println("Is derivative: " + util.isDerivativeFunction1(object2, derivative21, 0.01, 100, 0.001, 0.1d, 0.01d));
    System.out.println("Is derivative: " + util.isDerivativeFunction2(object2, derivative22, 0.01, 100, 0.001, 0.1d, 0.01d));
    
    solve(object1, object2, solver, 1000000);
    
    /* *****************************
     *  Solve with master function *
     *******************************/
    
    Function<Vector2D, Pair<Vector2D, SquareMatrix2D>> master = getMasterFunction();
    solver = new NewtonRaphson2D(master)
                                 .accuracy(1e-6)
                                 .iterationsPerTry(1000)
                                 .iterationsTotal(100000);
    
    solve(object1, object2, solver, 1000000);
}
 
開發者ID:prasser,項目名稱:newtonraphson,代碼行數:81,代碼來源:Tests.java

示例13: ModelPitman

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Creates a new instance
 * 
 * @param model
 * @param histogram
 * @param sampleSize
 * @param config
 * @param stop
 */
ModelPitman(final ARXPopulationModel model,
            final RiskModelHistogram histogram,
            final int sampleSize,
            final NewtonRaphsonConfiguration<?> config,
            final WrappedBoolean stop) {
    
    super(histogram, model, sampleSize, stop, new WrappedInteger());

    // Init
    double c1 = getNumClassesOfSize(1);
    double c2 = getNumClassesOfSize(2);
    double u = getNumClasses();
    double p = getPopulationSize();
    double n = sampleSize;

    // Initial guess
    c2 = c2 != 0 ? c2 : 1; // Overestimate
    double c = (c1 * (c1 - 1)) / c2;
    double t = ((n * u * c) - (c1 * (n - 1) * ((2 * u) + c))) /
               (((2 * c1 * u) + (c1 * c)) - (n * c));
    double a = ((t * (c1 - n)) + ((n - 1) * c1)) / (n * u);

    // Prepare
    NewtonRaphson2D solver = null;
    Vector2D result = new Vector2D(Double.NaN, Double.NaN);

    // Solve the Maximum Likelihood Estimates with Polygamma functions
    if (usePolygamma) {
        solver = new NewtonRaphson2D(getMasterFunctionClosed(histogram.getHistogram(), u, n)).configure(config);
        result = solver.solve(new Vector2D(t, a));
    }

    // If no result found, use iterative implementation
    if (Double.isNaN(result.x) || Double.isNaN(result.y)) {

        solver = new NewtonRaphson2D(getMasterFunctionIterative(histogram.getHistogram(), u, n)).configure(config);
        result = solver.solve(new Vector2D(t, a));

        // Else check the result against the iterative implementation
    } else {

        // Run test
        Vector2D test = getObjectFunctionsIterative(histogram.getHistogram(), u, n).evaluate(result);

        // Check result of test
        if (Double.isNaN(test.x) || Double.isNaN(test.y) ||
            Math.abs(test.x) > config.getAccuracy() ||
            Math.abs(test.y) > config.getAccuracy()) {

            // Use iterative implementation
            solver = new NewtonRaphson2D(getMasterFunctionIterative(histogram.getHistogram(),
                                                                    u,
                                                                    n)).configure(config);
            result = solver.solve(new Vector2D(t, a));
        }
    }

    // Compile the result
    this.numUniques = getResult(result, p);
}
 
開發者ID:arx-deidentifier,項目名稱:risk-benchmark,代碼行數:70,代碼來源:ModelPitman.java

示例14: getMasterFunctionClosed

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Returns the master function including the object function and the
 * derivative functions
 * 
 * @return
 */
private Function<Vector2D, Pair<Vector2D, SquareMatrix2D>>
        getMasterFunctionClosed(final int[] classes,
                                final double u,
                                final double n) {

    return new Function<Vector2D, Pair<Vector2D, SquareMatrix2D>>() {

        // Init
        private final SquareMatrix2D                 derivatives = new SquareMatrix2D();
        private final Vector2D                       object      = new Vector2D();
        private final Pair<Vector2D, SquareMatrix2D> result      = new Pair<Vector2D, SquareMatrix2D>(object,
                                                                                                      derivatives);

        @Override
        public Pair<Vector2D, SquareMatrix2D> evaluate(Vector2D input) {

            // Prepare
            double t = input.x; // Theta
            double a = input.y; // Alpha

            // These closed forms have been verified with Matlab and Mathematica
            double val0 = u - 1d;
            double val1 = Gamma.digamma(val0 + (t / a) + 1d);
            double val2 = Gamma.trigamma((a + t + (a * val0)) / a);
            double val3 = Gamma.trigamma((t / a) + 1d);
            double val4 = Gamma.digamma((t / a) + 1d);
            double val5 = a * a;

            double d1 = (val3 - val2) / (val5);
            double d5 = (((a * val1) + (t * val2)) - (a * val4) - (t * val3)) / (val5 * a);
            double d3 = (((((val5 * val0) - (t * t * val2)) + (t * t * val3)) - 
                        (2d * a * t * val1)) + (2d * a * t * val4)) / (val5 * val5);
            double o1 = (val1 - val4) / a;
            double o3 = ((-t * val1) + (a * val0) + (t * val4)) / (a * a);
            double o2 = Gamma.digamma(n + t) - Gamma.digamma(t + 1d);
            
            checkInterrupt();

            double d2 = Gamma.trigamma(t + 1d) - Gamma.trigamma(n + t);

            // For each class...
            double d4 = 0;
            double o4 = 0;
            double val6 = Gamma.digamma(1d - a);
            double val7 = Gamma.trigamma(1d - a);
            for (int i = 0; i < classes.length; i += 2) {
                int key = classes[i];
                int value = classes[i + 1];

                if (key != 1) {
                    d4 += value * (val7 - Gamma.trigamma(key - a));
                    o4 += value * (Gamma.digamma(key - a) - val6);
                }
                checkInterrupt();
            }

            // Store
            derivatives.x1 = d2 - d1;
            derivatives.x2 = 0d - d5;
            derivatives.y1 = 0d - d5;
            derivatives.y2 = 0d - d3 - d4;
            object.x = o1 - o2;
            object.y = o3 - o4;

            // Return
            return result;
        }
    };
}
 
開發者ID:arx-deidentifier,項目名稱:risk-benchmark,代碼行數:76,代碼來源:ModelPitman.java

示例15: ModelPitman

import de.linearbits.newtonraphson.Vector2D; //導入依賴的package包/類
/**
 * Creates a new instance
 * 
 * @param model
 * @param histogram
 * @param config
 * @param stop
 */
ModelPitman(final ARXPopulationModel model,
            final RiskModelHistogram histogram,
            final NewtonRaphsonConfiguration<?> config,
            final WrappedBoolean stop) {

    super(histogram, model, stop, new WrappedInteger());

    // Init
    double c1 = getNumClassesOfSize(1);
    double c2 = getNumClassesOfSize(2);
    double u = getNumClasses();
    double p = getPopulationSize();
    double n = super.getSampleSize();

    // Initial guess
    c2 = c2 != 0 ? c2 : 1; // Overestimate
    double c = (c1 * (c1 - 1)) / c2;
    double t = ((n * u * c) - (c1 * (n - 1) * ((2 * u) + c))) /
               (((2 * c1 * u) + (c1 * c)) - (n * c));
    double a = ((t * (c1 - n)) + ((n - 1) * c1)) / (n * u);

    // Solve the Maximum Likelihood Estimates with Polygamma functions
    NewtonRaphson2D solver = new NewtonRaphson2D(getMasterFunctionClosed(histogram.getHistogram(), u, n),
                                                 getConstraint()).configure(config);
    Vector2D result = solver.solve(new Vector2D(t, a));

    // If no result found, use iterative implementation
    if (Double.isNaN(result.x) || Double.isNaN(result.y)) {

        solver = new NewtonRaphson2D(getMasterFunctionIterative(histogram.getHistogram(), u, n),
                                     getConstraint()).configure(config);
        result = solver.solve(new Vector2D(t, a));

        // Else check the result against the iterative implementation
    } else {

        // Run test
        Vector2D test = getObjectFunctionsIterative(histogram.getHistogram(), u, n).evaluate(result);

        // Check result of test
        if (Double.isNaN(test.x) || Double.isNaN(test.y) ||
            Math.abs(test.x) > config.getAccuracy() ||
            Math.abs(test.y) > config.getAccuracy()) {

            // Use iterative implementation
            solver = new NewtonRaphson2D(getMasterFunctionIterative(histogram.getHistogram(), u, n),
                                                                    getConstraint()).configure(config);
            result = solver.solve(new Vector2D(t, a));
        }
    }

    // Compile the result
    this.numUniques = getResult(result, p);
}
 
開發者ID:arx-deidentifier,項目名稱:arx,代碼行數:63,代碼來源:ModelPitman.java


注:本文中的de.linearbits.newtonraphson.Vector2D類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。