本文整理匯總了Java中com.rapidminer.parameter.conditions.EqualStringCondition類的典型用法代碼示例。如果您正苦於以下問題:Java EqualStringCondition類的具體用法?Java EqualStringCondition怎麽用?Java EqualStringCondition使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
EqualStringCondition類屬於com.rapidminer.parameter.conditions包,在下文中一共展示了EqualStringCondition類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getParameterTypes
import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = new ArrayList<>();
ParameterType type = new ParameterTypeSqlExpr(FilterDataParams.FilterExpr(),
"Defines the filter expression, you can use sql-like expression",
exampleSetInput, true);
type.registerDependencyCondition(new EqualStringCondition(this, PARAMETER_CONDITION_CLASS, false,
KNOWN_CONDITION_NAMES[CONDITION_CUSTOM_FILTER]));
type.setExpert(false);
types.add(type);
type = new ParameterTypeStringCategory(PARAMETER_CONDITION_CLASS, "Implementation of the condition.",
KNOWN_CONDITION_NAMES,
KNOWN_CONDITION_NAMES[CONDITION_CUSTOM_FILTER], false);
type.setExpert(false); // confusing, only show for experts, default custom filters are fine
// for new users
types.add(type);
return types;
}
示例2: getParameterTypes
import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = super.getParameterTypes();
ParameterType type = new ParameterTypeStringCategory(PARAMETER_CONDITION_CLASS, "Implementation of the condition.", ConditionedExampleSet.KNOWN_CONDITION_NAMES, ConditionedExampleSet.KNOWN_CONDITION_NAMES[ConditionedExampleSet.CONDITION_ALL], false);
type.setExpert(false);
types.add(type);
type = new ParameterTypeString(PARAMETER_PARAMETER_STRING, "Parameter string for the condition, e.g. 'attribute=value' for the AttributeValueFilter.", true);
type.registerDependencyCondition(new EqualStringCondition(this, PARAMETER_CONDITION_CLASS, true, ConditionedExampleSet.KNOWN_CONDITION_NAMES[7]));
type.setExpert(false);
types.add(type);
type = new ParameterTypeBoolean(PARAMETER_INVERT_FILTER, "Indicates if only examples should be accepted which would normally filtered.", false);
type.setExpert(false);
types.add(type);
return types;
}
示例3: getParameterTypes
import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = new ArrayList<>();
ParameterType type = new ParameterTypeEnumeration(
MultiLayerPerceptronParams.Layers(),
"Describes the size of all layers.",
new ParameterTypeInt(
"layer_sizes",
"The size of the layers. A size of < 0 leads to a layer size of (number_of_attributes + number of classes) / 2 + 1.",
-1, Integer.MAX_VALUE, -1));
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt(SharedParams.MaxIter(),
"The number of training cycles used for the neural network training.", 1, Integer.MAX_VALUE, 500);
type.setExpert(false);
types.add(type);
types.add(new ParameterTypeDouble(SharedParams.Tol(),
"The optimization is stopped if the training error gets below this epsilon value.", 0.0d,
Double.POSITIVE_INFINITY, 0.00001d));
type = new ParameterTypeStringCategory(MultiLayerPerceptronParams.Solver(), " The solver that " +
"Multilayer Perceptron Classifier use", SOLVERS, SOLVERS[0], false);
type.setOptional(false);
types.add(type);
type = new ParameterTypeDouble(SharedParams.StepSize(), "Step size to be used for each iteration " +
"of optimization", Double.MIN_NORMAL, Double.MAX_VALUE, 0.03d);
type.registerDependencyCondition(new EqualStringCondition(this, MultiLayerPerceptronParams.Solver(), true, SOLVERS[1]));
types.add(type);
// types.addAll(RandomGenerator.getRandomGeneratorParameters(this));
return types;
}
示例4: getParameterTypes
import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = new ArrayList<>();
// condition class
ParameterType type = new ParameterTypeStringCategory(FAMILY,
"The name of family which is description of the" +
" error distribution to be used in the model.",FAMILIES,FAMILIES[0],false);
type.setExpert(false);
types.add(type);
type = new ParameterTypeStringCategory(GAUSSIAN_LINK,"The name of link function which provides the relationship between" +
" the linear predictor and the mean of the distribution function.",
GAUSSIAN_LINKS,GAUSSIAN_LINKS[0],false);
type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[0]));
types.add(type);
type = new ParameterTypeStringCategory(BINOMIAL_LINK,"The name of link function which provides the relationship between" +
" the linear predictor and the mean of the distribution function.",
BINOMIAL_LINKS,BINOMIAL_LINKS[0],false);
type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[1]));
types.add(type);
type = new ParameterTypeStringCategory(POISSON_LINK,"The name of link function which provides the relationship between" +
" the linear predictor and the mean of the distribution function.",
POISSON_LINKS,POISSON_LINKS[0],false);
type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[2]));
types.add(type);
type = new ParameterTypeStringCategory(GAMMA_LINK,"The name of link function which provides the relationship between" +
" the linear predictor and the mean of the distribution function.",
GAMMA_LINKS,GAMMA_LINKS[0],false);
type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[3]));
types.add(type);
type = new ParameterTypeStringCategory(GeneralizedLinearRegressionParams.solver(),"The solver " +
"algorithm for optimization.",
SOLVERS,SOLVERS[0],false);
type.setExpert(false);
types.add(type);
type = new ParameterTypeInt(GeneralizedLinearRegressionParams.maxIter(), "Maximum number of " +
"iterations.", 1, Integer.MAX_VALUE, 20);
type.setExpert(false);
types.add(type);
type = new ParameterTypeDouble(GeneralizedLinearRegressionParams.tol(), "The convergence " +
"tolerance for iterative algorithm", 0, Double.MAX_VALUE, 0.01);
type.setExpert(false);
types.add(type);
type = new ParameterTypeBoolean(GeneralizedLinearRegressionParams.fitIntercept(), "Whether to fit an " +
"intercept term.", false, false);
type.setExpert(false);
types.add(type);
type = new ParameterTypeDouble(GeneralizedLinearRegressionParams.regParam(), "Regularization " +
"Parameter (>=0).", 0.0, 1.0,0.0);
type.setExpert(false);
types.add(type);
return types;
}
示例5: getParameterTypes
import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
public List<ParameterType> getParameterTypes() {
List<ParameterType> types = new ArrayList<>();
// condition class
ParameterType type = new ParameterTypeStringCategory(DISTRIBUTION, "The name of " +
"distribution which to generate data.",DISTRIBUTIONS,DISTRIBUTIONS[0],false);
type.setExpert(false);
types.add(type);
// exponential
type = new ParameterTypeDouble(EXPONENTIAL_MEAN,"The mean of exponential distribution",
Double.MIN_NORMAL, Double.MAX_VALUE, 0.5d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[1]));
types.add(type);
// gamma
type = new ParameterTypeDouble(SHAPE,"shape parameter (> 0) for the gamma distribution",
Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[2]));
types.add(type);
type = new ParameterTypeDouble(SCALE,"scale parameter (> 0) for the gamma distribution",
Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[2]));
types.add(type);
// log normal
type = new ParameterTypeDouble(LOG_NORMAL_MEAN,"Mean of the log normal distribution",
0.0d, Double.MAX_VALUE, 0.0d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[3]));
types.add(type);
type = new ParameterTypeDouble(LOG_NORMAL_STD,"Standard deviation of the log normal distribution",
Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[3]));
types.add(type);
// poisson
type = new ParameterTypeDouble(POISSON_MEAN,"Mean for the Poisson distribution",
Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);
type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
DISTRIBUTIONS[4]));
types.add(type);
type = new ParameterTypeLong(NUM_ROWS, "The number of rows",
1, Long.MAX_VALUE, 100, false);
types.add(type);
type = new ParameterTypeInt(NUM_COLUMNS, "The number of columns",
1, Integer.MAX_VALUE, 10, false);
types.add(type);
return types;
}