當前位置: 首頁>>代碼示例>>Java>>正文


Java EqualStringCondition類代碼示例

本文整理匯總了Java中com.rapidminer.parameter.conditions.EqualStringCondition的典型用法代碼示例。如果您正苦於以下問題:Java EqualStringCondition類的具體用法?Java EqualStringCondition怎麽用?Java EqualStringCondition使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


EqualStringCondition類屬於com.rapidminer.parameter.conditions包,在下文中一共展示了EqualStringCondition類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getParameterTypes

import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
	List<ParameterType> types = new ArrayList<>();

	ParameterType type = new ParameterTypeSqlExpr(FilterDataParams.FilterExpr(),
			"Defines the filter expression, you can use sql-like expression",
			exampleSetInput, true);
	type.registerDependencyCondition(new EqualStringCondition(this, PARAMETER_CONDITION_CLASS, false,
			KNOWN_CONDITION_NAMES[CONDITION_CUSTOM_FILTER]));
	type.setExpert(false);
	types.add(type);

	type = new ParameterTypeStringCategory(PARAMETER_CONDITION_CLASS, "Implementation of the condition.",
			KNOWN_CONDITION_NAMES,
			KNOWN_CONDITION_NAMES[CONDITION_CUSTOM_FILTER], false);
	type.setExpert(false); // confusing, only show for experts, default custom filters are fine
	// for new users
	types.add(type);

	return types;
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:22,代碼來源:FilterOp.java

示例2: getParameterTypes

import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
	List<ParameterType> types = super.getParameterTypes();
	
	ParameterType type  = new ParameterTypeStringCategory(PARAMETER_CONDITION_CLASS, "Implementation of the condition.", ConditionedExampleSet.KNOWN_CONDITION_NAMES, ConditionedExampleSet.KNOWN_CONDITION_NAMES[ConditionedExampleSet.CONDITION_ALL], false);
	type.setExpert(false);
	types.add(type);
	
	type = new ParameterTypeString(PARAMETER_PARAMETER_STRING, "Parameter string for the condition, e.g. 'attribute=value' for the AttributeValueFilter.", true);
	type.registerDependencyCondition(new EqualStringCondition(this, PARAMETER_CONDITION_CLASS, true, ConditionedExampleSet.KNOWN_CONDITION_NAMES[7]));
	type.setExpert(false);
	types.add(type);
	
       type = new ParameterTypeBoolean(PARAMETER_INVERT_FILTER, "Indicates if only examples should be accepted which would normally filtered.", false);
       type.setExpert(false);
       types.add(type);
       
	return types;
}
 
開發者ID:rapidminer,項目名稱:rapidminer-5,代碼行數:20,代碼來源:ExampleFilter.java

示例3: getParameterTypes

import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
@Override
public List<ParameterType> getParameterTypes() {
    List<ParameterType> types = new ArrayList<>();
    ParameterType type = new ParameterTypeEnumeration(
            MultiLayerPerceptronParams.Layers(),
            "Describes the size of all layers.",
            new ParameterTypeInt(
                    "layer_sizes",
                    "The size of the layers. A size of < 0 leads to a layer size of (number_of_attributes + number of classes) / 2 + 1.",
                    -1, Integer.MAX_VALUE, -1));
    type.setExpert(false);
    types.add(type);

    type = new ParameterTypeInt(SharedParams.MaxIter(),
            "The number of training cycles used for the neural network training.", 1, Integer.MAX_VALUE, 500);
    type.setExpert(false);
    types.add(type);

    types.add(new ParameterTypeDouble(SharedParams.Tol(),
            "The optimization is stopped if the training error gets below this epsilon value.", 0.0d,
            Double.POSITIVE_INFINITY, 0.00001d));

    type = new ParameterTypeStringCategory(MultiLayerPerceptronParams.Solver(), " The solver that " +
            "Multilayer Perceptron Classifier use", SOLVERS, SOLVERS[0], false);
    type.setOptional(false);
    types.add(type);

    type = new ParameterTypeDouble(SharedParams.StepSize(), "Step size to be used for each iteration " +
            "of optimization", Double.MIN_NORMAL, Double.MAX_VALUE, 0.03d);
    type.registerDependencyCondition(new EqualStringCondition(this, MultiLayerPerceptronParams.Solver(), true, SOLVERS[1]));
    types.add(type);

    // types.addAll(RandomGenerator.getRandomGeneratorParameters(this));
    return types;
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:36,代碼來源:MultiLayerPerceptronOp.java

示例4: getParameterTypes

import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
public List<ParameterType> getParameterTypes() {
    List<ParameterType> types = new ArrayList<>();

    // condition class
    ParameterType type = new ParameterTypeStringCategory(FAMILY,
            "The name of family which is description of the" +
            " error distribution to be used in the model.",FAMILIES,FAMILIES[0],false);
    type.setExpert(false);
    types.add(type);

    type = new ParameterTypeStringCategory(GAUSSIAN_LINK,"The name of link function which provides the relationship between" +
            " the linear predictor and the mean of the distribution function.",
            GAUSSIAN_LINKS,GAUSSIAN_LINKS[0],false);
    type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[0]));
    types.add(type);

    type = new ParameterTypeStringCategory(BINOMIAL_LINK,"The name of link function which provides the relationship between" +
            " the linear predictor and the mean of the distribution function.",
            BINOMIAL_LINKS,BINOMIAL_LINKS[0],false);
    type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[1]));
    types.add(type);

    type = new ParameterTypeStringCategory(POISSON_LINK,"The name of link function which provides the relationship between" +
            " the linear predictor and the mean of the distribution function.",
            POISSON_LINKS,POISSON_LINKS[0],false);
    type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[2]));
    types.add(type);

    type = new ParameterTypeStringCategory(GAMMA_LINK,"The name of link function which provides the relationship between" +
            " the linear predictor and the mean of the distribution function.",
            GAMMA_LINKS,GAMMA_LINKS[0],false);
    type.registerDependencyCondition(new EqualStringCondition(this, FAMILY, true, FAMILIES[3]));
    types.add(type);


    type = new ParameterTypeStringCategory(GeneralizedLinearRegressionParams.solver(),"The solver " +
            "algorithm for optimization.",
            SOLVERS,SOLVERS[0],false);
    type.setExpert(false);
    types.add(type);

    type = new ParameterTypeInt(GeneralizedLinearRegressionParams.maxIter(), "Maximum number of " +
            "iterations.", 1, Integer.MAX_VALUE, 20);
    type.setExpert(false);
    types.add(type);


    type = new ParameterTypeDouble(GeneralizedLinearRegressionParams.tol(), "The convergence " +
            "tolerance for iterative algorithm", 0, Double.MAX_VALUE, 0.01);
    type.setExpert(false);
    types.add(type);

    type = new ParameterTypeBoolean(GeneralizedLinearRegressionParams.fitIntercept(), "Whether to fit an " +
            "intercept term.", false, false);
    type.setExpert(false);
    types.add(type);

    type = new ParameterTypeDouble(GeneralizedLinearRegressionParams.regParam(), "Regularization " +
            "Parameter (>=0).", 0.0, 1.0,0.0);
    type.setExpert(false);
    types.add(type);


    return types;
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:66,代碼來源:GeneralizedLinearRegressionOp.java

示例5: getParameterTypes

import com.rapidminer.parameter.conditions.EqualStringCondition; //導入依賴的package包/類
public List<ParameterType> getParameterTypes() {
    List<ParameterType> types = new ArrayList<>();

    // condition class
    ParameterType type = new ParameterTypeStringCategory(DISTRIBUTION, "The name of " +
            "distribution which to generate data.",DISTRIBUTIONS,DISTRIBUTIONS[0],false);
    type.setExpert(false);
    types.add(type);

    // exponential
    type = new ParameterTypeDouble(EXPONENTIAL_MEAN,"The mean of exponential distribution",
            Double.MIN_NORMAL, Double.MAX_VALUE, 0.5d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[1]));
    types.add(type);


    // gamma
    type = new ParameterTypeDouble(SHAPE,"shape parameter (> 0) for the gamma distribution",
            Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[2]));
    types.add(type);

    type = new ParameterTypeDouble(SCALE,"scale parameter (> 0) for the gamma distribution",
            Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[2]));
    types.add(type);

    // log normal
    type = new ParameterTypeDouble(LOG_NORMAL_MEAN,"Mean of the log normal distribution",
            0.0d, Double.MAX_VALUE, 0.0d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[3]));
    types.add(type);

    type = new ParameterTypeDouble(LOG_NORMAL_STD,"Standard deviation of the log normal distribution",
            Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[3]));
    types.add(type);

    // poisson
    type = new ParameterTypeDouble(POISSON_MEAN,"Mean for the Poisson distribution",
            Double.MIN_NORMAL, Double.MAX_VALUE, 0.1d, false);

    type.registerDependencyCondition(new EqualStringCondition(this, DISTRIBUTION, true,
            DISTRIBUTIONS[4]));
    types.add(type);


    type = new ParameterTypeLong(NUM_ROWS, "The number of rows",
            1, Long.MAX_VALUE, 100, false);
    types.add(type);

    type = new ParameterTypeInt(NUM_COLUMNS, "The number of columns",
            1, Integer.MAX_VALUE, 10, false);
    types.add(type);

    return types;
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:68,代碼來源:RandomGeneratorOp.java


注:本文中的com.rapidminer.parameter.conditions.EqualStringCondition類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。