本文整理匯總了Java中com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule類的典型用法代碼示例。如果您正苦於以下問題:Java GeneratePredictionModelTransformationRule類的具體用法?Java GeneratePredictionModelTransformationRule怎麽用?Java GeneratePredictionModelTransformationRule使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
GeneratePredictionModelTransformationRule類屬於com.rapidminer.operator.ports.metadata包,在下文中一共展示了GeneratePredictionModelTransformationRule類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: AbstractStacking
import com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule; //導入依賴的package包/類
public AbstractStacking(OperatorDescription description, String... subprocessNames) {
super(description, subprocessNames);
baseInputExtender.start();
baseModelExtender.start();
getTransformer().addRule(baseInputExtender.makePassThroughRule(exampleSetInput));
getTransformer().addRule(new SubprocessTransformRule(getSubprocess(0)));
getTransformer().addRule(
new GeneratePredictionModelTransformationRule(exampleSetInput, modelOutput, PredictionModel.class));
}
示例2: SDRulesetInduction
import com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule; //導入依賴的package包/類
/** Constructor. */
public SDRulesetInduction(OperatorDescription description) {
super(description, "Training");
getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, trainingInnerSource, SetRelation.EQUAL) {
@Override
public ExampleSetMetaData modifyExampleSet(ExampleSetMetaData metaData) {
AttributeMetaData weightAttribute = new AttributeMetaData("weight", Ontology.REAL, Attributes.WEIGHT_NAME);
weightAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(weightAttribute);
AttributeMetaData specialAttribute = new AttributeMetaData(TIMES_COVERED, Ontology.REAL, TIMES_COVERED);
specialAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(specialAttribute);
return metaData;
}
});
getTransformer().addRule(new SubprocessTransformRule(getSubprocess(0)));
getTransformer().addRule(
new GeneratePredictionModelTransformationRule(exampleSetInput, modelOutput, PredictionModel.class));
addValue(new ValueDouble("performance", "The performance.") {
@Override
public double getDoubleValue() {
return performance;
}
});
addValue(new ValueDouble("iteration", "The current iteration.") {
@Override
public double getDoubleValue() {
return currentIteration;
}
});
}
示例3: SDRulesetInduction
import com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule; //導入依賴的package包/類
/** Constructor. */
public SDRulesetInduction(OperatorDescription description) {
super(description, "Training");
getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, trainingInnerSource, SetRelation.EQUAL) {
@Override
public ExampleSetMetaData modifyExampleSet(ExampleSetMetaData metaData) {
AttributeMetaData weightAttribute = new AttributeMetaData("weight", Ontology.REAL, Attributes.WEIGHT_NAME);
weightAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(weightAttribute);
AttributeMetaData specialAttribute = new AttributeMetaData(TIMES_COVERED, Ontology.REAL, TIMES_COVERED);
specialAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(specialAttribute);
return metaData;
}
});
getTransformer().addRule(new SubprocessTransformRule(getSubprocess(0)));
getTransformer()
.addRule(new GeneratePredictionModelTransformationRule(exampleSetInput, modelOutput, PredictionModel.class));
addValue(new ValueDouble("performance", "The performance.") {
@Override
public double getDoubleValue() {
return performance;
}
});
addValue(new ValueDouble("iteration", "The current iteration.") {
@Override
public double getDoubleValue() {
return currentIteration;
}
});
}
示例4: AbstractStacking
import com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule; //導入依賴的package包/類
public AbstractStacking(OperatorDescription description, String ... subprocessNames) {
super(description, subprocessNames);
baseInputExtender.start();
baseModelExtender.start();
getTransformer().addRule(baseInputExtender.makePassThroughRule(exampleSetInput));
getTransformer().addRule(new SubprocessTransformRule(getSubprocess(0)));
getTransformer().addRule(new GeneratePredictionModelTransformationRule(exampleSetInput, modelOutput, PredictionModel.class));
}
示例5: SDRulesetInduction
import com.rapidminer.operator.ports.metadata.GeneratePredictionModelTransformationRule; //導入依賴的package包/類
/** Constructor. */
public SDRulesetInduction(OperatorDescription description) {
super(description, "Training");
getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, trainingInnerSource, SetRelation.EQUAL) {
@Override
public ExampleSetMetaData modifyExampleSet(ExampleSetMetaData metaData) {
AttributeMetaData weightAttribute = new AttributeMetaData("weight", Ontology.REAL, Attributes.WEIGHT_NAME);
weightAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(weightAttribute);
AttributeMetaData specialAttribute = new AttributeMetaData(TIMES_COVERED, Ontology.REAL, TIMES_COVERED);
specialAttribute.setValueSetRelation(SetRelation.UNKNOWN);
metaData.addAttribute(specialAttribute);
return metaData;
}
});
getTransformer().addRule(new SubprocessTransformRule(getSubprocess(0)));
getTransformer().addRule(new GeneratePredictionModelTransformationRule(exampleSetInput, modelOutput, PredictionModel.class));
addValue(new ValueDouble("performance", "The performance.") {
@Override
public double getDoubleValue() {
return performance;
}
});
addValue(new ValueDouble("iteration", "The current iteration.") {
@Override
public double getDoubleValue() {
return currentIteration;
}
});
}