本文整理匯總了Java中com.rapidminer.operator.learner.meta.WeightedPerformanceMeasures類的典型用法代碼示例。如果您正苦於以下問題:Java WeightedPerformanceMeasures類的具體用法?Java WeightedPerformanceMeasures怎麽用?Java WeightedPerformanceMeasures使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
WeightedPerformanceMeasures類屬於com.rapidminer.operator.learner.meta包,在下文中一共展示了WeightedPerformanceMeasures類的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: apply
import com.rapidminer.operator.learner.meta.WeightedPerformanceMeasures; //導入依賴的package包/類
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
// retrieving and applying model
PredictionModel model = modelInput.getData(PredictionModel.class);
exampleSet = model.apply(exampleSet);
Attribute weightAttr = exampleSet.getAttributes().getWeight();
if (weightAttr == null) {
weightAttr = Tools.createWeightAttribute(exampleSet);
}
WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);
// recalculate weight attribute statistics
exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);
// fill new table
RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);
int[] remappingIndices = new int[exampleSet.size()];
int i = 0;
for (Example example : exampleSet) {
if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
example.setValue(weightAttr, 1.0d);
remappingIndices[i] = 1;
}
i++;
}
checkForStop();
SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
splittedExampleSet.selectSingleSubset(1);
return splittedExampleSet;
}
示例2: apply
import com.rapidminer.operator.learner.meta.WeightedPerformanceMeasures; //導入依賴的package包/類
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
// retrieving and applying model
PredictionModel model = modelInput.getData(PredictionModel.class);
exampleSet = model.apply(exampleSet);
Attribute weightAttr = Tools.createWeightAttribute(exampleSet);
WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);
// recalculate weight attribute statistics
exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);
// fill new table
RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);
int[] remappingIndices = new int[exampleSet.size()];
int i = 0;
for (Example example : exampleSet) {
if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
example.setValue(weightAttr, 1.0d);
remappingIndices[i] = 1;
}
i++;
}
checkForStop();
SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
splittedExampleSet.selectSingleSubset(1);
return splittedExampleSet;
}
示例3: apply
import com.rapidminer.operator.learner.meta.WeightedPerformanceMeasures; //導入依賴的package包/類
@Override
public ExampleSet apply(ExampleSet exampleSet) throws OperatorException {
// retrieving and applying model
PredictionModel model = modelInput.getData(PredictionModel.class);
exampleSet = model.apply(exampleSet);
Attribute weightAttr = exampleSet.getAttributes().getWeight();
if (weightAttr == null) {
weightAttr = Tools.createWeightAttribute(exampleSet);
}
WeightedPerformanceMeasures wp = new WeightedPerformanceMeasures(exampleSet);
WeightedPerformanceMeasures.reweightExamples(exampleSet, wp.getContingencyMatrix(), true);
// recalculate weight attribute statistics
exampleSet.recalculateAttributeStatistics(exampleSet.getAttributes().getWeight());
double maxWeight = exampleSet.getStatistics(exampleSet.getAttributes().getWeight(), Statistics.MAXIMUM);
// fill new table
RandomGenerator randomGenerator = RandomGenerator.getRandomGenerator(this);
int[] remappingIndices = new int[exampleSet.size()];
int i = 0;
for (Example example: exampleSet) {
if (randomGenerator.nextDouble() > example.getValue(weightAttr) / maxWeight) {
example.setValue(weightAttr, 1.0d);
remappingIndices[i] = 1;
}
i++;
}
checkForStop();
SplittedExampleSet splittedExampleSet = new SplittedExampleSet(exampleSet, new Partition(remappingIndices, 2));
splittedExampleSet.selectSingleSubset(1);
return splittedExampleSet;
}