本文整理匯總了Java中com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial類的典型用法代碼示例。如果您正苦於以下問題:Java KernelPolynomial類的具體用法?Java KernelPolynomial怎麽用?Java KernelPolynomial使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
KernelPolynomial類屬於com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel包,在下文中一共展示了KernelPolynomial類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: createKernel
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
/**
* Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT,
* KERNEL_RADIAL, KERNEL_POLYNOMIAL, KERNEL_NEURAL, KERNEL_EPANECHNIKOV,
* KERNEL_GAUSSIAN_COMBINATION, or KERNEL_MULTIQUADRIC.
*/
public static Kernel createKernel(int kernelType) {
switch (kernelType) {
case KERNEL_DOT:
return new KernelDot();
case KERNEL_RADIAL:
return new KernelRadial();
case KERNEL_POLYNOMIAL:
return new KernelPolynomial();
case KERNEL_NEURAL:
return new KernelNeural();
case KERNEL_ANOVA:
return new KernelAnova();
case KERNEL_EPANECHNIKOV:
return new KernelEpanechnikov();
case KERNEL_GAUSSIAN_COMBINATION:
return new KernelGaussianCombination();
case KERNEL_MULTIQUADRIC:
return new KernelMultiquadric();
default:
return new KernelDot();
}
}
示例2: createKernel
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
/**
* Creates a new kernel of the given type. The kernel type has to be one out
* of KERNEL_DOT, KERNEL_RADIAL, KERNEL_POLYNOMIAL, KERNEL_NEURAL,
* KERNEL_EPANECHNIKOV, KERNEL_GAUSSIAN_COMBINATION, or KERNEL_MULTIQUADRIC.
*/
public static Kernel createKernel(int kernelType) {
switch (kernelType) {
case KERNEL_DOT:
return new KernelDot();
case KERNEL_RADIAL:
return new KernelRadial();
case KERNEL_POLYNOMIAL:
return new KernelPolynomial();
case KERNEL_NEURAL:
return new KernelNeural();
case KERNEL_ANOVA:
return new KernelAnova();
case KERNEL_EPANECHNIKOV:
return new KernelEpanechnikov();
case KERNEL_GAUSSIAN_COMBINATION:
return new KernelGaussianCombination();
case KERNEL_MULTIQUADRIC:
return new KernelMultiquadric();
default:
return new KernelDot();
}
}
示例3: createKernel
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
/**
* Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT,
* KERNEL_RADIAL, KERNEL_POLYNOMIAL, or KERNEL_NEURAL.
*/
public static Kernel createKernel(int kernelType) {
switch (kernelType) {
case KERNEL_RADIAL:
return new KernelRadial();
case KERNEL_POLYNOMIAL:
return new KernelPolynomial();
case KERNEL_NEURAL:
return new KernelNeural();
default:
return new KernelDot();
}
}
示例4: createKernel
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
/**
* Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT, KERNEL_RADIAL, KERNEL_POLYNOMIAL, or KERNEL_NEURAL.
*/
public static Kernel createKernel(int kernelType) {
switch (kernelType) {
case KERNEL_RADIAL:
return new KernelRadial();
case KERNEL_POLYNOMIAL:
return new KernelPolynomial();
case KERNEL_NEURAL:
return new KernelNeural();
default:
return new KernelDot();
}
}
示例5: learn
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
Attribute label = exampleSet.getAttributes().getLabel();
if (label.isNominal() && label.getMapping().size() != 2) {
throw new UserError(this, 114, getName(), label.getName());
}
// check if example set contains missing values, if so fail because
// this operator produces garbage with them
Tools.onlyNonMissingValues(exampleSet, getOperatorClassName(), this, Attributes.LABEL_NAME);
this.svmExamples = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(exampleSet,
label, getParameterAsBoolean(PARAMETER_SCALE));
// kernel
int cacheSize = getParameterAsInt(PARAMETER_KERNEL_CACHE);
int kernelType = getParameterAsInt(PARAMETER_KERNEL_TYPE);
kernel = createKernel(kernelType);
if (kernelType == KERNEL_RADIAL) {
((KernelRadial) kernel).setGamma(getParameterAsDouble(PARAMETER_KERNEL_GAMMA));
} else if (kernelType == KERNEL_POLYNOMIAL) {
((KernelPolynomial) kernel).setDegree(getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
} else if (kernelType == KERNEL_NEURAL) {
((KernelNeural) kernel).setParameters(getParameterAsDouble(PARAMETER_KERNEL_A),
getParameterAsDouble(PARAMETER_KERNEL_B));
} else if (kernelType == KERNEL_ANOVA) {
((KernelAnova) kernel).setParameters(getParameterAsDouble(PARAMETER_KERNEL_GAMMA),
getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
} else if (kernelType == KERNEL_EPANECHNIKOV) {
((KernelEpanechnikov) kernel).setParameters(getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
} else if (kernelType == KERNEL_GAUSSIAN_COMBINATION) {
((KernelGaussianCombination) kernel).setParameters(getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_SIGMA2), getParameterAsDouble(PARAMETER_KERNEL_SIGMA3));
} else if (kernelType == KERNEL_MULTIQUADRIC) {
((KernelMultiquadric) kernel).setParameters(getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_SHIFT));
}
kernel.init(svmExamples, cacheSize);
// SVM
svm = createSVM(label, kernel, svmExamples, exampleSet);
svm.init(kernel, svmExamples);
svm.train();
return createSVMModel(exampleSet, svmExamples, kernel, kernelType);
}
示例6: learn
import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelPolynomial; //導入依賴的package包/類
public Model learn(ExampleSet exampleSet) throws OperatorException {
Attribute label = exampleSet.getAttributes().getLabel();
if ((label.isNominal()) && (label.getMapping().size() != 2)) {
throw new UserError(this, 114, getName(), label.getName());
}
this.svmExamples = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(exampleSet, label, getParameterAsBoolean(PARAMETER_SCALE));
// kernel
int cacheSize = getParameterAsInt(PARAMETER_KERNEL_CACHE);
int kernelType = getParameterAsInt(PARAMETER_KERNEL_TYPE);
kernel = createKernel(kernelType);
if (kernelType == KERNEL_RADIAL)
((KernelRadial) kernel).setGamma(getParameterAsDouble(PARAMETER_KERNEL_GAMMA));
else if (kernelType == KERNEL_POLYNOMIAL)
((KernelPolynomial) kernel).setDegree(getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
else if (kernelType == KERNEL_NEURAL)
((KernelNeural) kernel).setParameters(
getParameterAsDouble(PARAMETER_KERNEL_A),
getParameterAsDouble(PARAMETER_KERNEL_B));
else if (kernelType == KERNEL_ANOVA)
((KernelAnova) kernel).setParameters(
getParameterAsDouble(PARAMETER_KERNEL_GAMMA),
getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
else if (kernelType == KERNEL_EPANECHNIKOV)
((KernelEpanechnikov) kernel).setParameters(
getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_DEGREE));
else if (kernelType == KERNEL_GAUSSIAN_COMBINATION)
((KernelGaussianCombination) kernel).setParameters(
getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_SIGMA2),
getParameterAsDouble(PARAMETER_KERNEL_SIGMA3));
else if (kernelType == KERNEL_MULTIQUADRIC)
((KernelMultiquadric) kernel).setParameters(
getParameterAsDouble(PARAMETER_KERNEL_SIGMA1),
getParameterAsDouble(PARAMETER_KERNEL_SHIFT));
kernel.init(svmExamples, cacheSize);
// SVM
svm = createSVM(label, kernel, svmExamples, exampleSet);
svm.init(kernel, svmExamples);
svm.train();
return createSVMModel(exampleSet, svmExamples, kernel, kernelType);
}