本文整理匯總了Java中com.rapidminer.operator.clustering.CentroidClusterModel類的典型用法代碼示例。如果您正苦於以下問題:Java CentroidClusterModel類的具體用法?Java CentroidClusterModel怎麽用?Java CentroidClusterModel使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
CentroidClusterModel類屬於com.rapidminer.operator.clustering包,在下文中一共展示了CentroidClusterModel類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: assinePoints
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
/**
* assign the Points to cluster
*
* @param model
* @return
*/
private CentroidClusterModel assinePoints(CentroidClusterModel model) {
double[] values = new double[attributes.size()];
int i = 0;
for (Example example : exampleSet) {
double[] exampleValues = getAsDoubleArray(example, attributes, values);
double nearestDistance = measure.calculateDistance(model.getCentroidCoordinates(0), exampleValues);
int nearestIndex = 0;
int id = 0;
for (Centroid cr : model.getCentroids()) {
double distance = measure.calculateDistance(cr.getCentroid(), exampleValues);
if (distance < nearestDistance) {
nearestDistance = distance;
nearestIndex = id;
}
id++;
}
centroidAssignments[i] = nearestIndex;
i++;
}
model.setClusterAssignments(centroidAssignments, exampleSet);
return model;
}
示例2: calcBIC
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
/**
* Calculate the BIC like in the paper by Dan Pelleg and Andrew Moore
*
* @param bestModel
* @return BIC of the given modell
*/
private double calcBIC(CentroidClusterModel bestModel) {
double loglike = 0;
int numCenters = bestModel.getNumberOfClusters();
int numDimensions = bestModel.getCentroidCoordinates(0).length;
int numParameters = numCenters - 1 + // probabilities
numCenters * numDimensions + // means
numCenters; // variance params
for (Cluster c : bestModel.getClusters()) {
int current_id = c.getClusterId();
loglike += logLikelihoodEstimate(c, bestModel.getCentroidCoordinates(current_id),
bestModel.getClusterAssignments(exampleSet), numCenters);
}
loglike -= numParameters / 2.0 * Math.log(examplesize);
return loglike;
}
示例3: computeClusterDistances
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private void computeClusterDistances(DistanceMatrix centroidDistances, double[] s, CentroidClusterModel model,
DistanceMeasure measure) {
for (int i = 0; i < model.getNumberOfClusters(); i++) {
s[i] = Double.POSITIVE_INFINITY;
}
for (int i = 0; i < model.getNumberOfClusters(); i++) {
for (int j = i + 1; j < model.getNumberOfClusters(); j++) {
final double d = measure.calculateDistance(model.getCentroidCoordinates(i), model.getCentroidCoordinates(j));
if (d < s[i]) {
s[i] = d;
}
if (d < s[j]) {
s[j] = d;
}
centroidDistances.set(i, j, d);
}
}
for (int i = 0; i < model.getNumberOfClusters(); i++) {
s[i] = 0.5 * s[i];
}
}
示例4: createCentroidPlotter
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private Plotter createCentroidPlotter(CentroidClusterModel cm, int width, int height) {
String[] dimensionNames = cm.getAttributeNames();
String[] columnNames = new String[dimensionNames.length + 1];
System.arraycopy(dimensionNames, 0, columnNames, 0, dimensionNames.length);
columnNames[columnNames.length - 1] = "Cluster";
SimpleDataTable dataTable = new SimpleDataTable("Centroid Positions", columnNames);
for (int i = 0; i < cm.getNumberOfClusters(); i++) {
double[] centroidValues = cm.getCentroidCoordinates(i);
String clusterName = cm.getCluster(i).getClusterId() + "";
double[] values = new double[centroidValues.length + 1];
System.arraycopy(centroidValues, 0, values, 0, centroidValues.length);
values[values.length - 1] = dataTable.mapString(values.length - 1, clusterName);
dataTable.add(new SimpleDataTableRow(values));
}
PlotterConfigurationModel settings = new PlotterConfigurationModel(PlotterConfigurationModel.PARALLEL_PLOT,
dataTable);
Plotter plotter = settings.getPlotter();
settings.setParameterAsString(PlotterAdapter.PARAMETER_PLOT_COLUMN, columnNames[columnNames.length - 1]);
settings.setParameterAsBoolean(LocalNormalizationPlotterAdapter.PARAMETER_LOCAL_NORMALIZATION, false);
settings.setParameterAsBoolean(LabelRotatingPlotterAdapter.PARAMETER_ROTATE_LABELS, true);
plotter.getPlotter().setSize(width, height);
return plotter;
}
示例5: calcBIC
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
/**
* Calculate the BIC like in the paper by Dan Pelleg and Andrew Moore
*
* @param bestModel
* @return BIC of the given modell
* @throws ProcessStoppedException
*/
private double calcBIC(CentroidClusterModel bestModel) throws ProcessStoppedException {
double loglike = 0;
int numCenters = bestModel.getNumberOfClusters();
int numDimensions = bestModel.getCentroidCoordinates(0).length;
int numParameters = numCenters - 1 + // probabilities
numCenters * numDimensions + // means
numCenters; // variance params
for (Cluster c : bestModel.getClusters()) {
int current_id = c.getClusterId();
loglike += logLikelihoodEstimate(c, bestModel.getCentroidCoordinates(current_id), numCenters);
}
loglike -= numParameters / 2.0 * Math.log(examplesize);
return loglike;
}
示例6: calcBIC
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
/**
* Calculate the BIC like in the paper by Dan Pelleg and Andrew Moore
*
* @param bestModel
* @return BIC of the given modell
*/
private double calcBIC(CentroidClusterModel bestModel) {
double loglike = 0;
int numCenters = bestModel.getNumberOfClusters();
int numDimensions = bestModel.getCentroidCoordinates(0).length;
int numParameters = (numCenters - 1) + // probabilities
numCenters * numDimensions + // means
numCenters; // variance params
for (Cluster c : bestModel.getClusters()) {
int current_id = c.getClusterId();
loglike += logLikelihoodEstimate(c,
bestModel.getCentroidCoordinates(current_id),
bestModel.getClusterAssignments(exampleSet), numCenters);
}
loglike -= (numParameters / 2.0) * Math.log(examplesize);
return loglike;
}
示例7: computeClusterDistances
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private void computeClusterDistances(DistanceMatrix centroidDistances, double[] s,
CentroidClusterModel model, DistanceMeasure measure) {
for (int i = 0; i < model.getNumberOfClusters(); i++){
s[i] = Double.POSITIVE_INFINITY;
}
for (int i = 0; i < model.getNumberOfClusters(); i++){
for (int j = i+1; j < model.getNumberOfClusters(); j++){
final double d = measure.calculateDistance(model.getCentroidCoordinates(i), model.getCentroidCoordinates(j));
if (d < s[i]){
s[i] = d;
}
if (d < s[j]){
s[j] = d;
}
centroidDistances.set(i, j, d);
}
}
for (int i = 0; i < model.getNumberOfClusters(); i++){
s[i] = 0.5 * s[i];
}
}
示例8: createCentroidPlotter
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private Plotter createCentroidPlotter(CentroidClusterModel cm, int width, int height) {
String[] dimensionNames = cm.getAttributeNames();
String[] columnNames = new String[dimensionNames.length + 1];
System.arraycopy(dimensionNames, 0, columnNames, 0, dimensionNames.length);
columnNames[columnNames.length - 1] = "Cluster";
SimpleDataTable dataTable = new SimpleDataTable("Centroid Positions", columnNames);
for (int i = 0; i < cm.getNumberOfClusters(); i++) {
double[] centroidValues = cm.getCentroidCoordinates(i);
String clusterName = cm.getCluster(i).getClusterId() + "";
double[] values = new double[centroidValues.length + 1];
System.arraycopy(centroidValues, 0, values, 0, centroidValues.length);
values[values.length - 1] = dataTable.mapString(values.length - 1, clusterName);
dataTable.add(new SimpleDataTableRow(values));
}
PlotterConfigurationModel settings = new PlotterConfigurationModel(PlotterConfigurationModel.PARALLEL_PLOT, dataTable);
Plotter plotter = settings.getPlotter();
settings.setParameterAsString(ParallelPlotter2.PARAMETER_PLOT_COLUMN, columnNames[columnNames.length - 1]);
settings.setParameterAsBoolean(ParallelPlotter2.PARAMETER_LOCAL_NORMALIZATION, false);
settings.setParameterAsBoolean(ParallelPlotter2.PARAMETER_ROTATE_LABELS, true);
plotter.getPlotter().setSize(width, height);
return plotter;
}
示例9: getAverageWithinDistance
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private double[] getAverageWithinDistance(CentroidClusterModel model, ExampleSet exampleSet) throws OperatorException {
DistanceMeasure measure = new SquaredEuclideanDistance();
measure.init(exampleSet);
int numberOfClusters = model.getNumberOfClusters();
// counting distances within
double[] result = new double[numberOfClusters + 1];
int[] clusterSizes = new int[numberOfClusters];
int[] clusterIndices = model.getClusterAssignments(exampleSet);
int i = 0;
for (Example example : exampleSet) {
clusterSizes[clusterIndices[i]]++;
result[clusterIndices[i]] += measure.calculateDistance(example, model.getCentroidCoordinates(clusterIndices[i]));
i++;
}
// averaging by cluster sizes and sum over all
int totalSize = 0;
for (i = 0; i < numberOfClusters; i++) {
result[numberOfClusters] += result[i];
result[i] /= clusterSizes[i];
totalSize += clusterSizes[i];
}
result[numberOfClusters] /= totalSize;
return result;
}
示例10: getTableModel
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
@Override
public TableModel getTableModel(Object renderable, IOContainer ioContainer, boolean isReporting) {
CentroidClusterModel clusterModel = (CentroidClusterModel) renderable;
if (clusterModel != null) {
return new CentroidTableModel(clusterModel);
} else {
return null;
}
}
示例11: getVisualizationComponent
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
@Override
public Component getVisualizationComponent(Object renderable, IOContainer ioContainer) {
CentroidClusterModel cm = (CentroidClusterModel) renderable;
JPanel panel = new JPanel(new BorderLayout());
JPanel innerPanel = new JPanel(new BorderLayout());
innerPanel.add(createCentroidPlotter(cm, 800, 600).getPlotter());
innerPanel.setBorder(BorderFactory.createMatteBorder(10, 10, 5, 5, Colors.WHITE));
panel.add(innerPanel, BorderLayout.CENTER);
return panel;
}
示例12: assinePoints
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
/**
* assign the Points to cluster
*
* @param model
* @return
*/
private CentroidClusterModel assinePoints(CentroidClusterModel model) {
double[] values = new double[attributes.size()];
int i = 0;
for (Example example : exampleSet) {
double[] exampleValues = getAsDoubleArray(example, attributes,
values);
double nearestDistance = measure.calculateDistance(
model.getCentroidCoordinates(0), exampleValues);
int nearestIndex = 0;
int id = 0;
for (Centroid cr : model.getCentroids()) {
double distance = measure.calculateDistance(cr.getCentroid(),
exampleValues);
if (distance < nearestDistance) {
nearestDistance = distance;
nearestIndex = id;
}
id++;
}
centroidAssignments[i] = nearestIndex;
i++;
}
model.setClusterAssignments(centroidAssignments, exampleSet);
return model;
}
示例13: getAverageWithinDistance
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private double[] getAverageWithinDistance(CentroidClusterModel model, ExampleSet exampleSet) throws OperatorException {
DistanceMeasure measure = new SquaredEuclideanDistance();
measure.init(exampleSet);
int numberOfClusters = model.getNumberOfClusters();
// counting distances within
double[] result = new double[numberOfClusters + 1];
int[] clusterSizes = new int[numberOfClusters];
int[] clusterIndices = model.getClusterAssignments(exampleSet);
int i = 0;
for (Example example: exampleSet) {
clusterSizes[clusterIndices[i]]++;
result[clusterIndices[i]] += measure.calculateDistance(example, model.getCentroidCoordinates(clusterIndices[i]));
i++;
}
// averaging by cluster sizes and sum over all
int totalSize = 0;
for (i = 0; i < numberOfClusters; i++) {
result[numberOfClusters] += result[i];
result[i] /= clusterSizes[i];
totalSize += clusterSizes[i];
}
result[numberOfClusters] /= totalSize;
return result;
}
示例14: getDaviesBouldin
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
private double getDaviesBouldin(CentroidClusterModel model, ExampleSet exampleSet) throws OperatorException {
DistanceMeasure measure = new EuclideanDistance();
measure.init(exampleSet);
int numberOfClusters = model.getNumberOfClusters();
// counting distances within
double[] withinClusterDistance = new double[numberOfClusters];
int[] clusterSizes = new int[numberOfClusters];
int[] clusterIndices = model.getClusterAssignments(exampleSet);
int i = 0;
for (Example example: exampleSet) {
clusterSizes[clusterIndices[i]]++;
withinClusterDistance[clusterIndices[i]] += measure.calculateDistance(example, model.getCentroidCoordinates(clusterIndices[i]));
i++;
}
// averaging by cluster sizes and sum over all
for (i = 0; i < numberOfClusters; i++) {
withinClusterDistance[i] /= clusterSizes[i];
}
double result = 0.0;
for (i = 0; i < numberOfClusters; i++) {
double max = Double.NEGATIVE_INFINITY;
for (int j = 0; j < numberOfClusters; j++)
if (i != j) {
double val = (withinClusterDistance[i] + withinClusterDistance[j]) / measure.calculateDistance(model.getCentroidCoordinates(i), model.getCentroidCoordinates(j));
if (val > max)
max = val;
}
result = result + max;
}
return result / model.getNumberOfClusters();
}
示例15: getTableModel
import com.rapidminer.operator.clustering.CentroidClusterModel; //導入依賴的package包/類
@Override
public TableModel getTableModel(Object renderable, IOContainer ioContainer, boolean isReporting) {
CentroidClusterModel clusterModel = (CentroidClusterModel) renderable;
if (clusterModel != null) {
return new CentroidTableModel(clusterModel);
} else {
return null;
}
}