當前位置: 首頁>>代碼示例>>Java>>正文


Java OptimizationResponse類代碼示例

本文整理匯總了Java中com.joptimizer.optimizers.OptimizationResponse的典型用法代碼示例。如果您正苦於以下問題:Java OptimizationResponse類的具體用法?Java OptimizationResponse怎麽用?Java OptimizationResponse使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


OptimizationResponse類屬於com.joptimizer.optimizers包,在下文中一共展示了OptimizationResponse類的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: solve

import com.joptimizer.optimizers.OptimizationResponse; //導入依賴的package包/類
public Result solve(final Result kickStarter) {

        //  myOptimizationRequest.setInitialPoint(new double[] { 0.2, 0.2 });

        final OptimizationRequestHandler tmpHandler = myRequest instanceof LPOptimizationRequest ? new LPPrimalDualMethod() : null;

        if (myRequest instanceof LPOptimizationRequest) {
            ((LPOptimizationRequest) myRequest).setPresolvingDisabled(true);
        }

        DEFAULT.configure(myRequest, tmpHandler, myOptions);
        final Optional<Configurator> optional = myOptions.getConfigurator(Configurator.class);
        if (optional.isPresent()) {
            optional.get().configure(myRequest, tmpHandler, myOptions);
        }

        // myOptimizer.setOptimizationRequest(myOptimizationRequest);
        tmpHandler.setOptimizationRequest(myRequest);
        try {

            tmpHandler.optimize();
        } catch (final JOptimizerException exception) {

            exception.printStackTrace();
        }

        final OptimizationResponse response = tmpHandler.getOptimizationResponse();

        final State retState = Optimisation.State.OPTIMAL;
        // final double retValue = response.getValue();
        final Access1D<Double> retSolution = Access1D.wrap(response.getSolution());

        return new Optimisation.Result(retState, retSolution);
    }
 
開發者ID:optimatika,項目名稱:ojAlgo-extensions,代碼行數:35,代碼來源:SolverJOptimizer.java

示例2: solveFeatureWeights

import com.joptimizer.optimizers.OptimizationResponse; //導入依賴的package包/類
/**
 * FeatureWeight factory which solves the best weights given Feature Expectations calculated from
 * the expert demonstrations and a history of Feature Expectations.
 * @param expertExpectations Feature Expectations calculated from the expert demonstrations
 * @param featureExpectations Feature History of feature expectations generated from past policies
 * @return the best feature weights
 */
private static FeatureWeights solveFeatureWeights(
		double[] expertExpectations, List<double[]> featureExpectations) {
	// We are solving a Quadratic Programming Problem here, yay!
	// Solve equation of form xT * P * x + qT * x + r
	// Let x = {w0, w1, ... , wn, t}
	int weightsSize = expertExpectations.length;

	// The objective is to maximize t, or minimize -t
	double[] qObjective = new double[weightsSize + 1];
	qObjective[weightsSize] = -1;
	LinearMultivariateRealFunction objectiveFunction = 
			new LinearMultivariateRealFunction( qObjective, 0);

	// We set the requirement that all feature expectations generated have to be less than the expert
	List<ConvexMultivariateRealFunction> expertBasedWeightConstraints = 
			new ArrayList<ConvexMultivariateRealFunction>();

	// (1/2)xT * Pi * x + qiT + ri <= 0
	// Equation (11) wT * uE >= wT * u(j) + t ===>  (u(j) - uE)T * w + t <= 0
	// Because x = {w0, w1, ... , wn, t}, we can set
	// qi = {u(j)_1 - uE_1, ... , u(j)_n - uE_n, 1}
	for (double[] expectations : featureExpectations) {
		double[] difference = new double[weightsSize + 1];
		for (int i = 0; i < expectations.length; ++i) {
			difference[i] = expectations[i] - expertExpectations[i];
		}
		difference[weightsSize] = 1;
		expertBasedWeightConstraints.add(new LinearMultivariateRealFunction(difference, 1));
	}

	// L2 norm of weights must be less than or equal to 1. So 
	// P = Identity, except for the last entry (which cancels t).
	double[][] identityMatrix = Utils.createConstantDiagonalMatrix(weightsSize + 1, 1);
	identityMatrix[weightsSize][weightsSize] = 0;
	expertBasedWeightConstraints.add(new PSDQuadraticMultivariateRealFunction(identityMatrix, null, -0.5));

	OptimizationRequest optimizationRequest = new OptimizationRequest();
	optimizationRequest.setF0(objectiveFunction);
	optimizationRequest.setFi(expertBasedWeightConstraints.toArray(
			new ConvexMultivariateRealFunction[expertBasedWeightConstraints.size()]));
	optimizationRequest.setCheckKKTSolutionAccuracy(false);
	optimizationRequest.setTolerance(1.E-12);
	optimizationRequest.setToleranceFeas(1.E-12);

	JOptimizer optimizer = new JOptimizer();
	optimizer.setOptimizationRequest(optimizationRequest);
	try {
		optimizer.optimize();
	} catch (Exception e) {
		System.out.println(e);
		return null;
	}
	OptimizationResponse optimizationResponse = optimizer.getOptimizationResponse();

	double[] solution = optimizationResponse.getSolution();
	double[] weights = Arrays.copyOfRange(solution, 0, weightsSize);
	double score = solution[weightsSize];
	return new FeatureWeights(weights, score);
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:67,代碼來源:ApprenticeshipLearning.java


注:本文中的com.joptimizer.optimizers.OptimizationResponse類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。