當前位置: 首頁>>代碼示例>>Java>>正文


Java TreeGP類代碼示例

本文整理匯總了Java中com.github.chen0040.gp.treegp.TreeGP的典型用法代碼示例。如果您正苦於以下問題:Java TreeGP類的具體用法?Java TreeGP怎麽用?Java TreeGP使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


TreeGP類屬於com.github.chen0040.gp.treegp包,在下文中一共展示了TreeGP類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: createWithDepth

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
public void createWithDepth(int allowableDepth, TreeGP manager, TGPInitializationStrategy initializationStrategy){

      final int constantCount = manager.getConstants().size();
      for(int i=0; i < constantCount; ++i){
         constantSet.add(new Terminal("c" + i, manager.constant(i), manager.constantText(i), true), manager.constantWeight(i));
      }

      final int registerCount = manager.getVariableCount();
      for(int i=0; i < registerCount; ++i) {
         variableSet.add(new Terminal("v" + i, 0.0, "", false), 1.0);
      }

      final int operatorCount = manager.getOperatorSet().size();
      for(int i=0; i < operatorCount; ++i) {
         Primitive operator = manager.getOperatorSet().get(i);
         operatorSet.add(operator, manager.getOperatorSet().getWeight(i));
      }

      root = TreeGenerator.createWithDepth(this, allowableDepth, manager, initializationStrategy);
      calcLength();
      calcDepth();
   }
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:23,代碼來源:Program.java

示例2: apply

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
public static void apply(Solution solution1, Solution solution2, TreeGP manager)
{
   RandEngine randEngine = manager.getRandEngine();

   int tree_count = solution1.getTrees().size();
   for (int i = 0; i < tree_count; ++i)
   {
      if (tree_count > 1 && randEngine.uniform() < 0.5)
      {
         Program temp = solution2.getTrees().get(i);
         solution2.getTrees().set(i, solution1.getTrees().get(i));
         solution1.getTrees().set(i, temp);
      }
      else
      {
         apply(solution1.getTrees().get(i), solution2.getTrees().get(i), manager);
      }

   }

   solution1.invalidateCost();
   solution2.invalidateCost();
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:24,代碼來源:Crossover.java

示例3: test_symbolic_regression

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setDisplayEvery(2);
   Solution program = tgp.fit(trainingData);
   logger.info("global: {}", program.mathExpression());

   test(program, testingData, false);

}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例4: createTreeGP

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
private TreeGP createTreeGP(){
   TreeGP tgp = TreeGP.defaultConfig();
   tgp.setVariableCount(2);
   tgp.setCostEvaluator((program, observations)->{
      double error = 0;
      for(Observation observation : observations){
         program.execute(observation);
         error += Math.pow(observation.getOutput(0) - observation.getPredictedOutput(0), 2.0);
      }


      return error;
   });
   tgp.setPopulationSize(1000);
   tgp.setMaxGeneration(10); // should be 1000 for full evolution
   return tgp;
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例5: test_symbolic_regression_with_crossover_subtree_no_bias

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression_with_crossover_subtree_no_bias() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setCrossoverStrategy(TGPCrossoverStrategy.CROSSVOER_SUBTREE_NO_BIAS);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例6: test_symbolic_regression_with_mutation_hoist

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression_with_mutation_hoist() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setMutationStrategy(TGPMutationStrategy.MUTATION_HOIST);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:17,代碼來源:MexicanHatUnitTest.java

示例7: test_symbolic_regression_with_mutation_subtree_kinnear

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression_with_mutation_subtree_kinnear() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setMutationStrategy(TGPMutationStrategy.MUTATION_SUBTREE_KINNEAR);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例8: test_symbolic_regression_replacement_mu_plus_lambda

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression_replacement_mu_plus_lambda() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setReplacementStrategy(TGPPopulationReplacementStrategy.MuPlusLambda);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例9: test_symbolic_regression_pop_init_ptc_1

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_symbolic_regression_pop_init_ptc_1() {

   List<Observation> data = Tutorials.mexican_hat();
   CollectionUtils.shuffle(data);
   TupleTwo<List<Observation>, List<Observation>> split_data = CollectionUtils.split(data, 0.9);
   List<Observation> trainingData = split_data._1();
   List<Observation> testingData = split_data._2();

   TreeGP tgp = createTreeGP();
   tgp.setPopulationInitializationStrategy(TGPInitializationStrategy.INITIALIZATION_METHOD_PTC1);

   Solution program = tgp.fit(trainingData);

   test(program, testingData, true);

}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:18,代碼來源:MexicanHatUnitTest.java

示例10: apply

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
public static void apply(Solution solution, TreeGP manager)
{
   List<Program> trees = solution.getTrees();
   int count = trees.size();
   for (int i = 0; i < count; ++i)
   {
      apply(trees.get(i), manager);
   }

   solution.invalidateCost();
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:12,代碼來源:MacroMutation.java

示例11: apply

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
public static void apply(Program program, TreeGP manager)
{
   RandEngine randEngine = manager.getRandEngine();
   TreeNode node = program.anyNode(randEngine)._1();

   if (node.isTerminal())
   {
      Primitive terminal = program.anyTerminal(randEngine);
      int trials = 0;
      int max_trials = 50;
      while (node.getPrimitive() == terminal)
      {
         terminal = program.anyTerminal(randEngine);
         trials++;
         if (trials > max_trials) break;
      }
      if (terminal != null)
      {
         node.setPrimitive(terminal);
      }

   }
   else
   {
      int parameter_count = node.arity();
      Primitive op = program.getOperatorSet().anyOther(parameter_count, node.getPrimitive(), randEngine);
      if (op != null)
      {
         node.setPrimitive(op);
      }

   }
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:34,代碼來源:MicroMutation.java

示例12: apply

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
public static void apply(List<Solution> solutions, TreeGP programManager){
   TGPInitializationStrategy initializationStrategy = programManager.getPopulationInitializationStrategy();
   if(initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_FULL
           || initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_GROW
           || initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_PTC1
           || initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_RANDOM_BRANCH){
      initializeNotRamped(solutions, programManager);
   } else if(initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_RAMPED_FULL
           || initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_RAMPED_GROW){
      initializeRamped(solutions, programManager);
   } else if(initializationStrategy == TGPInitializationStrategy.INITIALIZATION_METHOD_RAMPED_HALF_HALF){
      initializeRampedHalfHalf(solutions, programManager);
   }
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:15,代碼來源:PopulationInitialization.java

示例13: initializeNotRamped

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
private static void initializeNotRamped(List<Solution> solutions, TreeGP programManager) {
   int iPopulationSize = programManager.getPopulationSize();
   for (int i = 0; i < iPopulationSize; i++)
   {
      Solution solution = createSolution(programManager, programManager.getMaxDepthForCreation(), programManager.getPopulationInitializationStrategy());
      solutions.add(solution);
   }
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:9,代碼來源:PopulationInitialization.java

示例14: createSolution

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
private static Solution createSolution(TreeGP programManager, int maxDepth, TGPInitializationStrategy initializationStrategy){
   final int treeCount = programManager.getTreeCountPerSolution();
   return new Solution(treeCount, (index) -> {
      Program tree = new Program();
      tree.createWithDepth(maxDepth, programManager, initializationStrategy);
      return tree;
   });
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:9,代碼來源:PopulationInitialization.java

示例15: test_simple

import com.github.chen0040.gp.treegp.TreeGP; //導入依賴的package包/類
@Test
public void test_simple(){
   TreeGP tgp = new TreeGP();
   tgp.getOperatorSet().addAll(new Concat());
   tgp.addConstants("Hello", "World", "Hi", "There", "Morning", "Me", "Good", "You", "to", "!");
   tgp.setVariableCount(0);

   tgp.setCostEvaluator((program, observations)->{
      double error = 0;
      for(Observation obs : observations){
         TextObservation observation = (TextObservation)obs;
         program.executeWithText(observation);
         String predicted_text = observation.getPredictedTextOutput(0);
         error += Math.max(0, observation.text.length() - evaluate(observation.text, predicted_text));
         error += (double)(predicted_text.length() - observation.text.length()) / observation.text.length();
      }

      return error;
   });
   tgp.setPopulationSize(1000);
   tgp.setDisplayEvery(2);
   tgp.setMaxGeneration(100); // should be 1000 for full evolution

   List<Observation> trainingData = new ArrayList<>();
   TextObservation target = new TextObservation("Hello World Good Morning to You !");
   trainingData.add(target);

   Solution solution = tgp.fit(trainingData);

   solution.executeWithText(target);

   System.out.println(target.getPredictedTextOutput(0));
}
 
開發者ID:chen0040,項目名稱:java-genetic-programming,代碼行數:34,代碼來源:TextGeneratorUnitTest.java


注:本文中的com.github.chen0040.gp.treegp.TreeGP類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。