本文整理匯總了Java中ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory類的典型用法代碼示例。如果您正苦於以下問題:Java PreProcessorFactory類的具體用法?Java PreProcessorFactory怎麽用?Java PreProcessorFactory使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
PreProcessorFactory類屬於ch.zhaw.facerecognitionlibrary.PreProcessor包,在下文中一共展示了PreProcessorFactory類的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: onCameraFrame
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Mat imgRgba = inputFrame.rgba();
Mat img = new Mat();
imgRgba.copyTo(img);
List<Mat> images = ppF.getProcessedImage(img, PreProcessorFactory.PreprocessingMode.RECOGNITION);
Rect[] faces = ppF.getFacesForRecognition();
// Selfie / Mirror mode
if(front_camera){
Core.flip(imgRgba,imgRgba,1);
}
if(images == null || images.size() == 0 || faces == null || faces.length == 0 || ! (images.size() == faces.length)){
// skip
return imgRgba;
} else {
faces = MatOperation.rotateFaces(imgRgba, faces, ppF.getAngleForRecognition());
for(int i = 0; i<faces.length; i++){
MatOperation.drawRectangleAndLabelOnPreview(imgRgba, faces[i], rec.recognize(images.get(i), ""), front_camera);
}
return imgRgba;
}
}
開發者ID:Qualeams,項目名稱:Android-Face-Recognition-with-Deep-Learning-Test-Framework,代碼行數:23,代碼來源:RecognitionActivity.java
示例2: onResume
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
@Override
public void onResume()
{
super.onResume();
ppF = new PreProcessorFactory(getApplicationContext());
numberOfTries = 0;
animalOverlay = animalOverlayHelper.getAnimalOverlay("");
if (animalOverlay != null) {
mediaPlayerAnimalSound = MediaPlayer.create(this, getResources().getIdentifier(animalOverlay.getSoundFile(), AuthenticationInstructionHelper.RESOURCES_RAW_FOLDER, getPackageName()));
}
preview.enableView();
mediaPlayerTabletPlacement = AuthenticationInstructionHelper.getMediaPlayerTabletPlacement(getApplicationContext());
mediaPlayerTabletPlacement.start();
mediaPlayerTabletPlacementOverlay = AuthenticationInstructionHelper.getMediaPlayerTabletPlacementOverlay(getApplicationContext());
tensorFlowLoadingThread.start();
startTimeFallback = new Date().getTime();
startTimeAuthenticationAnimation = new Date().getTime();
}
示例3: onResume
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
@Override
public void onResume()
{
super.onResume();
ppF = new PreProcessorFactory(getApplicationContext());
animalOverlay = animalOverlayHelper.getAnimalOverlay(animalOverlayName);
if (animalOverlay != null){
mediaPlayerAnimalSound = MediaPlayer.create(this, getResources().getIdentifier(animalOverlay.getSoundFile(), AuthenticationInstructionHelper.RESOURCES_RAW_FOLDER, getPackageName()));
}
preview.enableView();
if (!authenticationAnimationAlreadyPlayed){
mediaPlayerTabletPlacement = AuthenticationInstructionHelper.getMediaPlayerTabletPlacement(getApplicationContext());
mediaPlayerTabletPlacement.start();
}
mediaPlayerTabletPlacementOverlay = AuthenticationInstructionHelper.getMediaPlayerTabletPlacementOverlay(getApplicationContext());
startTimeFallback = new Date().getTime();
startTimeAuthenticationAnimation = new Date().getTime();
if (authenticationAnimationAlreadyPlayed){
prepareForAuthentication();
}
}
示例4: onResume
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
@Override
public void onResume()
{
super.onResume();
ppF = new PreProcessorFactory(this);
mAddPersonView.enableView();
}
開發者ID:Qualeams,項目名稱:Android-Face-Recognition-with-Deep-Learning-Test-Framework,代碼行數:9,代碼來源:AddPersonPreviewActivity.java
示例5: onResume
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
@Override
public void onResume()
{
super.onResume();
ppF = new PreProcessorFactory(getApplicationContext());
final android.os.Handler handler = new android.os.Handler(Looper.getMainLooper());
Thread t = new Thread(new Runnable() {
public void run() {
handler.post(new Runnable() {
@Override
public void run() {
progressBar.setVisibility(View.VISIBLE);
}
});
SharedPreferences sharedPref = PreferenceManager.getDefaultSharedPreferences(getApplicationContext());
String algorithm = sharedPref.getString("key_classification_method", getResources().getString(R.string.eigenfaces));
rec = RecognitionFactory.getRecognitionAlgorithm(getApplicationContext(), Recognition.RECOGNITION, algorithm);
handler.post(new Runnable() {
@Override
public void run() {
progressBar.setVisibility(View.GONE);
}
});
}
});
t.start();
// Wait until Eigenfaces loading thread has finished
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
mRecognitionView.enableView();
}
開發者ID:Qualeams,項目名稱:Android-Face-Recognition-with-Deep-Learning-Test-Framework,代碼行數:40,代碼來源:RecognitionActivity.java
示例6: MergeThread
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
public MergeThread(MergeSimilarStudentsJobService mergeService){
Context context = mergeService.getApplicationContext();
trainingThread = new TrainingThread(context);
ppF = new PreProcessorFactory(context);
LiteracyApplication literacyApplication = (LiteracyApplication) context.getApplicationContext();
DaoSession daoSession = literacyApplication.getDaoSession();
studentDao = daoSession.getStudentDao();
studentImageCollectionEventDao = daoSession.getStudentImageCollectionEventDao();
gson = new Gson();
this.mergeService = mergeService;
}
示例7: findSimilarStudentsUsingMeanFeatureVector
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
/**
* Find similar students
* Case 2: Student was added regularly but maybe on another tablet or due to some reason the authentication didn't recognize the student correctly in the numberOfTries
* ---> Use the meanFeatureVector as input for the cosineSimilarityScore calculation
* @param ppF
* @param tensorFlow
*/
private synchronized void findSimilarStudentsUsingMeanFeatureVector(PreProcessorFactory ppF, TensorFlow tensorFlow){
Log.i(getClass().getName(), "findSimilarStudentsUsingMeanFeatureVector");
// Iterate through all StudentImageCollectionEvents, where the Student is not null
List<StudentImageCollectionEvent> studentImageCollectionEvents = studentImageCollectionEventDao.queryBuilder().where(StudentImageCollectionEventDao.Properties.StudentId.notEq(0)).list();
Log.i(getClass().getName(), "studentImageCollectionEvents.size(): " + studentImageCollectionEvents.size());
for (StudentImageCollectionEvent studentImageCollectionEvent : studentImageCollectionEvents){
Student student = studentImageCollectionEvent.getStudent();
// Take the meanFeatureVector of the StudentImageCollectionEvent
List<Float> meanFeatureVectorList = gson.fromJson(studentImageCollectionEvent.getMeanFeatureVector(), new TypeToken<List<Float>>(){}.getType());
Mat meanFeatureVector = Converters.vector_float_to_Mat(meanFeatureVectorList);
RecognitionThread recognitionThread = new RecognitionThread(tensorFlow, studentImageCollectionEventDao);
recognitionThread.setImg(meanFeatureVector);
recognitionThread.setStudent(student);
// To indicate, that this Mat object contains the already extracted features and therefore this step can be skipped in the RecognitionThread
recognitionThread.setFeaturesAlreadyExtracted(true);
Log.i(getClass().getName(), "findSimilarStudentsUsingMeanFeatureVector: recognitionThread will be started to recognize student: " + student.getUniqueId());
recognitionThread.start();
try {
recognitionThread.join();
List<Student> recognizedStudents = recognitionThread.getRecognizedStudent();
if (recognizedStudents.size() > 0){
for (Student recognizedStudent : recognizedStudents){
if (recognizedStudent != null){
Log.i(getClass().getName(), "findSimilarStudentsUsingMeanFeatureVector: The student " + student.getUniqueId() + " has been recognized as " + recognizedStudent.getUniqueId());
mergeSimilarStudents(student, recognizedStudent);
}
}
} else {
Log.i(getClass().getName(), "findSimilarStudentsUsingMeanFeatureVector: The student " + student.getUniqueId() + " was not recognized");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
示例8: onResume
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
@Override
protected void onResume() {
super.onResume();
ppF = new PreProcessorFactory(getApplicationContext());
mDetectionView.enableView();
}
開發者ID:Qualeams,項目名稱:Android-Face-Recognition-with-Deep-Learning-Test-Framework,代碼行數:7,代碼來源:DetectionActivity.java
示例9: findSimilarStudentsUsingAvatarImages
import ch.zhaw.facerecognitionlibrary.PreProcessor.PreProcessorFactory; //導入依賴的package包/類
/**
* Find similar students
* Case 1: Student was added during fallback but in the meantime the same person has an existing StudentImageCollectionEvent and a new Student entry
* ---> Use the avatar image as input for the recognition
* @param ppF
* @param tensorFlow
*/
private synchronized void findSimilarStudentsUsingAvatarImages(PreProcessorFactory ppF, TensorFlow tensorFlow){
Log.i(getClass().getName(), "findSimilarStudentsUsingAvatarImages");
// Iterate through all Students
List<Student> students = studentDao.loadAll();
for (Student student : students){
// Take the avatar image of the Student
Mat avatarImage = Imgcodecs.imread(student.getAvatar());
// Search for faces in the avatar image
List<Mat> faceImages = ppF.getCroppedImage(avatarImage);
if (faceImages != null && faceImages.size() == 1) {
// Proceed if exactly one face has been detected
Mat faceImage = faceImages.get(0);
if (faceImage != null) {
// Get detected face rectangles
Rect[] faces = ppF.getFacesForRecognition();
if (faces != null && faces.length == 1) {
// Proceed if exactly one face rectangle exists
RecognitionThread recognitionThread = new RecognitionThread(tensorFlow, studentImageCollectionEventDao);
recognitionThread.setImg(faceImage);
recognitionThread.setStudent(student);
Log.i(getClass().getName(), "findSimilarStudentsUsingAvatarImages: recognitionThread will be started to recognize student: " + student.getUniqueId());
recognitionThread.start();
try {
recognitionThread.join();
List<Student> recognizedStudents = recognitionThread.getRecognizedStudent();
if (recognizedStudents.size() > 0){
for (Student recognizedStudent : recognizedStudents){
if (recognizedStudent != null){
Log.i(getClass().getName(), "findSimilarStudentsUsingAvatarImages: The student " + student.getUniqueId() + " has been recognized as " + recognizedStudent.getUniqueId());
mergeSimilarStudents(student, recognizedStudent);
}
}
} else {
Log.i(getClass().getName(), "findSimilarStudentsUsingAvatarImages: The student " + student.getUniqueId() + " was not recognized");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
}