當前位置: 首頁>>代碼示例>>Java>>正文


Java QFunction類代碼示例

本文整理匯總了Java中burlap.behavior.valuefunction.QFunction的典型用法代碼示例。如果您正苦於以下問題:Java QFunction類的具體用法?Java QFunction怎麽用?Java QFunction使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


QFunction類屬於burlap.behavior.valuefunction包,在下文中一共展示了QFunction類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: MAVIPlannerFactory

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes.
 * @param domain the domain in which to perform planing
 * @param jointModel the joint action model
 * @param jointRewardFunction the joint reward function
 * @param terminalFunction the terminal state function
 * @param discount the discount
 * @param hashingFactory the hashing factory to use for storing states
 * @param qInit the q-value initialization function to use.
 * @param backupOperator the backup operator that defines the solution concept being solved
 * @param maxDelta the threshold that causes VI to terminate when the max Q-value change is less than it
 * @param maxIterations the maximum number of iterations allowed
 */
public MAVIPlannerFactory(SGDomain domain, JointModel jointModel, JointRewardFunction jointRewardFunction, TerminalFunction terminalFunction,
						  double discount, HashableStateFactory hashingFactory, QFunction qInit, SGBackupOperator backupOperator, double maxDelta, int maxIterations){
	
	this.domain = domain;
	this.jointModel = jointModel;
	this.jointRewardFunction = jointRewardFunction;
	this.terminalFunction = terminalFunction;
	this.discount = discount;
	this.hashingFactory = hashingFactory;
	this.qInit = qInit;
	this.backupOperator = backupOperator;
	this.maxDelta = maxDelta;
	this.maxIterations = maxIterations;
	
}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:29,代碼來源:MADPPlannerFactory.java

示例2: QLInit

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes the algorithm. By default the agent will only save the last learning episode and a call to the {@link #planFromState(State)} method
 * will cause the valueFunction to use only one episode for planning; this should probably be changed to a much larger value if you plan on using this
 * algorithm as a planning algorithm.
 * @param domain the domain in which to learn
 * @param gamma the discount factor
 * @param hashingFactory the state hashing factory to use for Q-lookups
 * @param qInitFunction a {@link burlap.behavior.valuefunction.QFunction} object that can be used to initialize the Q-values.
 * @param learningRate the learning rate
 * @param learningPolicy the learning policy to follow during a learning episode.
 * @param maxEpisodeSize the maximum number of steps the agent will take in a learning episode for the agent stops trying.
 */
protected void QLInit(SADomain domain, double gamma, HashableStateFactory hashingFactory,
					  QFunction qInitFunction, double learningRate, Policy learningPolicy, int maxEpisodeSize){
	
	this.solverInit(domain, gamma, hashingFactory);
	this.qFunction = new HashMap<HashableState, QLearningStateNode>();
	this.learningRate = new ConstantLR(learningRate);
	this.learningPolicy = learningPolicy;
	this.maxEpisodeSize = maxEpisodeSize;
	this.qInitFunction = qInitFunction;
	
	numEpisodesForPlanning = 1;
	maxQChangeForPlanningTermination = 0.;

	
}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:28,代碼來源:QLearning.java

示例3: setSolver

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
@Override
public void setSolver(MDPSolverInterface solver){
	
	if(!(solver instanceof QFunction)){
		throw new RuntimeErrorException(new Error("Planner is not a QComputablePlanner"));
	}
	
	this.qplanner = (QFunction) solver;
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:10,代碼來源:GreedyQPolicy.java

示例4: setSolver

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
@Override
public void setSolver(MDPSolverInterface solver) {
	if(!(solver instanceof QFunction)){
		throw new RuntimeErrorException(new Error("Planner is not a QComputablePlanner"));
	}
	
	this.qplanner = (QFunction) solver;
	
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:10,代碼來源:BoltzmannQPolicy.java

示例5: logLikelihoodOfTrajectory

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Computes and returns the log-likelihood of the given trajectory under the current reward function parameters and weights it by the given weight.
 * @param ea the trajectory
 * @param weight the weight to assign the trajectory
 * @return the log-likelihood of the given trajectory under the current reward function parameters and weights it by the given weight.
 */
public double logLikelihoodOfTrajectory(EpisodeAnalysis ea, double weight){
	double logLike = 0.;
	Policy p = new BoltzmannQPolicy((QFunction)this.request.getPlanner(), 1./this.request.getBoltzmannBeta());
	for(int i = 0; i < ea.numTimeSteps()-1; i++){
		this.request.getPlanner().planFromState(ea.getState(i));
		double actProb = p.getProbOfAction(ea.getState(i), ea.getAction(i));
		logLike += Math.log(actProb);
	}
	logLike *= weight;
	return logLike;
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:18,代碼來源:MLIRL.java

示例6: logPolicyGrad

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Computes and returns the gradient of the Boltzmann policy for the given state and action.
 * @param s the state in which the policy is queried
 * @param ga the action for which the policy is queried.
 * @return s the gradient of the Boltzmann policy for the given state and action.
 */
public double [] logPolicyGrad(State s, GroundedAction ga){

	Policy p = new BoltzmannQPolicy((QFunction)this.request.getPlanner(), 1./this.request.getBoltzmannBeta());
	double invActProb = 1./p.getProbOfAction(s, ga);
	double [] gradient = BoltzmannPolicyGradient.computeBoltzmannPolicyGradient(s, ga, (QGradientPlanner)this.request.getPlanner(), this.request.getBoltzmannBeta());
	for(int f = 0; f < gradient.length; f++){
		gradient[f] *= invActProb;
	}
	return gradient;

}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:18,代碼來源:MLIRL.java

示例7: value

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
@Override
public double value(State s) {
	if(this.tf != null) {
		return QFunction.QFunctionHelper.getOptimalValue(this, s, this.tf);
	}
	else{
		return QFunction.QFunctionHelper.getOptimalValue(this, s);
	}
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:10,代碼來源:LSPI.java

示例8: DOOQPolicy

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Default constructor for DOO-Q policy. exploration is turned on and the Random object used for e-greedy exploration is initiated 
 * with a default seed. Exploration can be turned off with setExploration() method and setRandom() can be used to change the default seed
 * @param domain domain.
 * @param qSource Source for Q-Values... usually a DistributedQTable is used for this policy.
 * @param epsilon epsilon parameter for epsilon-Greedy exploration
 * 
 */
public DOOQPolicy(SGDomain domain, QFunction qSource, double epsilon, HashableStateFactory hashFactory){
	this.qSource = qSource;
	this.epsilon = epsilon;
	this.rand = new Random();
	this.exploring = true;		
	this.hashFactory = hashFactory;
	this.domain = domain;
	this.policyMemory = new HashMap<HashableState,AbstractGroundedAction>(100000);
	//this.useAbstractActions = useAbstractActions;
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:19,代碼來源:DOOQPolicy.java

示例9: QLTutorial

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
public QLTutorial(SADomain domain, double gamma, HashableStateFactory hashingFactory,
				  QFunction qinit, double learningRate, double epsilon){

	this.solverInit(domain, gamma, hashingFactory);
	this.qinit = qinit;
	this.learningRate = learningRate;
	this.qValues = new HashMap<HashableState, List<QValue>>();
	this.learningPolicy = new EpsilonGreedy(this, epsilon);

}
 
開發者ID:jmacglashan,項目名稱:burlap_examples,代碼行數:11,代碼來源:QLTutorial.java

示例10: SGNaiveQLAgent

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes with a default 0.1 epsilon greedy policy/strategy
 * @param d the domain in which the agent will act
 * @param discount the discount factor
 * @param learningRate the learning rate
 * @param qInitizalizer the Q-value initialization method
 * @param hashFactory the state hashing factory
 */
public SGNaiveQLAgent(SGDomain d, double discount, double learningRate, QFunction qInitizalizer, HashableStateFactory hashFactory) {
	this.init(d);
	this.discount = discount;
	this.learningRate = new ConstantLR(learningRate);
	this.hashFactory = hashFactory;
	this.qInit = qInitizalizer;
	
	this.qMap = new HashMap<HashableState, List<QValue>>();
	stateRepresentations = new HashMap<HashableState, State>();
	this.policy = new EpsilonGreedy(this, 0.1);
	
	this.storedMapAbstraction = new ShallowIdentityStateMapping();
}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:22,代碼來源:SGNaiveQLAgent.java

示例11: init

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes. The policy will be defaulted to a epsilon-greey max wellfare policy.
 * @param d the domain in which to perform learing
 * @param discount the discount factor
 * @param learningRate the learning rate function
 * @param hashFactory the hashing factory used to index states and Q-values
 * @param qInit the Q-value initialization function
 * @param backupOperator the backup operator to use that defines the solution concept being learned
 * @param queryOtherAgentsForTheirQValues it true, then the agent uses the Q-values for other agents that are stored by them; if false then the agent stores a Q-value for each other agent in the world.
 * @param learningPolicy the learningPolicy to follow
 */
public void init(SGDomain d, double discount, LearningRate learningRate, HashableStateFactory hashFactory, QFunction qInit, SGBackupOperator backupOperator, boolean queryOtherAgentsForTheirQValues, PolicyFromJointPolicy learningPolicy){
	this.domain = d;
	this.discount = discount;
	this.learningRate = learningRate;
	this.hashingFactory = hashFactory;
	this.qInit = qInit;
	this.backupOperator = backupOperator;
	this.queryOtherAgentsQSource = queryOtherAgentsForTheirQValues;
	this.learningPolicy = learningPolicy;
	
}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:23,代碼來源:MAQLFactory.java

示例12: qLearningExample

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
public void qLearningExample(String outputPath){

		LearningAgent agent = new QLearning(domain, 0.99, hashingFactory, 0., 1.);

		//run learning for 50 episodes
		for(int i = 0; i < 50; i++){
			EpisodeAnalysis ea = agent.runLearningEpisode(env);

			ea.writeToFile(outputPath + "ql_" + i);
			System.out.println(i + ": " + ea.maxTimeStep());

			//reset environment for next learning episode
			env.resetEnvironment();
		}

		simpleValueFunctionVis((ValueFunction)agent, new GreedyQPolicy((QFunction)agent));

	}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:19,代碼來源:BasicBehavior.java

示例13: GreedyQPolicy

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes with a QComputablePlanner
 * @param planner the QComputablePlanner to use
 */
public GreedyQPolicy(QFunction planner){
	qplanner = planner;
	rand = RandomFactory.getMapped(0);
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:9,代碼來源:GreedyQPolicy.java

示例14: EpsilonGreedy

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
/**
 * Initializes with the QComputablePlanner to use and the value of epsilon to use, where epsilon is the probability of taking a random action.
 * @param planner the QComputablePlanner to use
 * @param epsilon the probability of taking a random action.
 */
public EpsilonGreedy(QFunction planner, double epsilon) {
	qplanner = planner;
	this.epsilon = epsilon;
	rand = RandomFactory.getMapped(0);
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:11,代碼來源:EpsilonGreedy.java

示例15: value

import burlap.behavior.valuefunction.QFunction; //導入依賴的package包/類
@Override
public double value(State s) {
	return QFunction.QFunctionHelper.getOptimalValue(this, s);
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:5,代碼來源:SGNaiveQLAgent.java


注:本文中的burlap.behavior.valuefunction.QFunction類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。