當前位置: 首頁>>代碼示例>>Java>>正文


Java CorrelatedEquilibriumSolver類代碼示例

本文整理匯總了Java中burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver的典型用法代碼示例。如果您正苦於以下問題:Java CorrelatedEquilibriumSolver類的具體用法?Java CorrelatedEquilibriumSolver怎麽用?Java CorrelatedEquilibriumSolver使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


CorrelatedEquilibriumSolver類屬於burlap.behavior.stochasticgames.solvers包,在下文中一共展示了CorrelatedEquilibriumSolver類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: computeColStrategy

import burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver; //導入依賴的package包/類
@Override
public double[] computeColStrategy(double[][] rowPayoff,
		double[][] colPayoff) {
	
	double [][] jointStrategy;
	if(this.objective != CorrelatedEquilibriumObjective.LIBERTARIAN){
		jointStrategy = CorrelatedEquilibriumSolver.getCorrelatedEQJointStrategy(this.objective, rowPayoff, colPayoff);
		return GeneralBimatrixSolverTools.marginalizeColPlayerStrategy(jointStrategy);
	}
	else{
		//libertarian assumes row player request, so transpose matrices
		jointStrategy = CorrelatedEquilibriumSolver.getCorrelatedEQJointStrategy(this.objective, 
				GeneralBimatrixSolverTools.transposeMatrix(rowPayoff), GeneralBimatrixSolverTools.transposeMatrix(colPayoff));
		
		//return row since we transposed players
		return GeneralBimatrixSolverTools.marginalizeRowPlayerStrategy(jointStrategy);
	}
	
	
}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:21,代碼來源:CorrelatedEquilibrium.java

示例2: computeRowStrategy

import burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver; //導入依賴的package包/類
@Override
public double[] computeRowStrategy(double[][] rowPayoff,
		double[][] colPayoff) {
	
	double [][] jointStrategy = CorrelatedEquilibriumSolver.getCorrelatedEQJointStrategy(this.objective, rowPayoff, colPayoff);
	return GeneralBimatrixSolverTools.marginalizeRowPlayerStrategy(jointStrategy);

}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:9,代碼來源:CorrelatedEquilibrium.java

示例3: performBackup

import burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver; //導入依賴的package包/類
@Override
public double performBackup(State s, String forAgent,
		Map<String, SGAgentType> agentDefinitions, AgentQSourceMap qSourceMap) {
	
	if(agentDefinitions.size() != 2){
		throw new RuntimeException("Correlated Q only defined for two agents.");
	}
	
	String otherAgentName = null;
	for(String aname : agentDefinitions.keySet()){
		if(!aname.equals(forAgent)){
			otherAgentName = aname;
			break;
		}
	}
	
	
	QSourceForSingleAgent forAgentQSource = qSourceMap.agentQSource(forAgent);
	QSourceForSingleAgent otherAgentQSource = qSourceMap.agentQSource(otherAgentName);
	
	List<GroundedSGAgentAction> forAgentGSAs = SGAgentAction.getAllApplicableGroundedActionsFromActionList(s, forAgent, agentDefinitions.get(forAgent).actions);
	List<GroundedSGAgentAction> otherAgentGSAs = SGAgentAction.getAllApplicableGroundedActionsFromActionList(s, otherAgentName, agentDefinitions.get(otherAgentName).actions);
	
	double [][] forPlayerPaoyff = new double[forAgentGSAs.size()][otherAgentGSAs.size()];
	double [][] otherPlayerPaoyff = new double[forAgentGSAs.size()][otherAgentGSAs.size()];
	
	
	for(int i = 0; i < forAgentGSAs.size(); i++){
		for(int j = 0; j < otherAgentGSAs.size(); j++){
			JointAction ja = new JointAction();
			ja.addAction(forAgentGSAs.get(i));
			ja.addAction(otherAgentGSAs.get(j));
			
			double q1 = forAgentQSource.getQValueFor(s, ja).q;
			double q2 = otherAgentQSource.getQValueFor(s, ja).q;
			
			forPlayerPaoyff[i][j] = q1;
			otherPlayerPaoyff[i][j] = q2;
			
		}
	}
	
	double [][] jointActionProbs = CorrelatedEquilibriumSolver.getCorrelatedEQJointStrategy(this.objectiveType, forPlayerPaoyff, otherPlayerPaoyff);
	double [] expectedValue = GeneralBimatrixSolverTools.expectedPayoffs(forPlayerPaoyff, otherPlayerPaoyff, jointActionProbs);
	
	
	return expectedValue[0];
}
 
開發者ID:f-leno,項目名稱:DOO-Q_BRACIS2016,代碼行數:49,代碼來源:CorrelatedQ.java

示例4: VICorrelatedTest

import burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver; //導入依賴的package包/類
public static void VICorrelatedTest(){

		GridGame gridGame = new GridGame();
		final OOSGDomain domain = gridGame.generateDomain();

		final HashableStateFactory hashingFactory = new SimpleHashableStateFactory();

		final State s = GridGame.getPrisonersDilemmaInitialState();

		JointRewardFunction rf = new GridGame.GGJointRewardFunction(domain, -1, 100, false);
		TerminalFunction tf = new GridGame.GGTerminalFunction(domain);

		SGAgentType at = GridGame.getStandardGridGameAgentType(domain);
		MAValueIteration vi = new MAValueIteration(domain, rf, tf, 0.99, hashingFactory, 0., new CorrelatedQ(CorrelatedEquilibriumSolver.CorrelatedEquilibriumObjective.UTILITARIAN), 0.00015, 50);

		World w = new World(domain, rf, tf, s);


		//for correlated Q, use a correlated equilibrium policy joint policy
		ECorrelatedQJointPolicy jp0 = new ECorrelatedQJointPolicy(CorrelatedEquilibriumSolver.CorrelatedEquilibriumObjective.UTILITARIAN, 0.);


		MultiAgentDPPlanningAgent a0 = new MultiAgentDPPlanningAgent(domain, vi, new PolicyFromJointPolicy(0, jp0, true), "agent0", at);
		MultiAgentDPPlanningAgent a1 = new MultiAgentDPPlanningAgent(domain, vi, new PolicyFromJointPolicy(1, jp0, true), "agent1", at);

		w.join(a0);
		w.join(a1);

		GameEpisode ga = null;
		List<GameEpisode> games = new ArrayList<GameEpisode>();
		for(int i = 0; i < 10; i++){
			ga = w.runGame();
			games.add(ga);
		}

		Visualizer v = GGVisualizer.getVisualizer(9, 9);
		new GameSequenceVisualizer(v, domain, games);


	}
 
開發者ID:jmacglashan,項目名稱:burlap_examples,代碼行數:41,代碼來源:GridGameExample.java

示例5: performBackup

import burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver; //導入依賴的package包/類
@Override
public double performBackup(State s, int forAgent, List<SGAgentType> agentDefinitions, AgentQSourceMap qSourceMap) {

	if(agentDefinitions.size() != 2){
		throw new RuntimeException("CoCoQ only defined for two agents.");
	}

	int otherAgent = forAgent == 0 ? 1 : 0;
	QSourceForSingleAgent forAgentQSource = qSourceMap.agentQSource(forAgent);
	QSourceForSingleAgent otherAgentQSource = qSourceMap.agentQSource(otherAgent);

	List<Action> forAgentGSAs = ActionUtils.allApplicableActionsForTypes(agentDefinitions.get(forAgent).actions, s);
	List<Action> otherAgentGSAs = ActionUtils.allApplicableActionsForTypes(agentDefinitions.get(otherAgent).actions, s);

	double [][] forPlayerPaoyff = new double[forAgentGSAs.size()][otherAgentGSAs.size()];
	double [][] otherPlayerPaoyff = new double[forAgentGSAs.size()][otherAgentGSAs.size()];


	for(int i = 0; i < forAgentGSAs.size(); i++){
		for(int j = 0; j < otherAgentGSAs.size(); j++){
			JointAction ja = new JointAction();
			ja.setAction(forAgent, forAgentGSAs.get(i));
			ja.setAction(otherAgent, otherAgentGSAs.get(j));

			double q1 = forAgentQSource.getQValueFor(s, ja).q;
			double q2 = otherAgentQSource.getQValueFor(s, ja).q;

			forPlayerPaoyff[i][j] = q1;
			otherPlayerPaoyff[i][j] = q2;

		}
	}

	double [][] jointActionProbs = CorrelatedEquilibriumSolver.getCorrelatedEQJointStrategy(this.objectiveType, forPlayerPaoyff, otherPlayerPaoyff);
	double [] expectedValue = GeneralBimatrixSolverTools.expectedPayoffs(forPlayerPaoyff, otherPlayerPaoyff, jointActionProbs);


	return expectedValue[0];

}
 
開發者ID:jmacglashan,項目名稱:burlap,代碼行數:41,代碼來源:CorrelatedQ.java


注:本文中的burlap.behavior.stochasticgames.solvers.CorrelatedEquilibriumSolver類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。