本文整理匯總了Java中boofcv.alg.color.ColorHsv類的典型用法代碼示例。如果您正苦於以下問題:Java ColorHsv類的具體用法?Java ColorHsv怎麽用?Java ColorHsv使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
ColorHsv類屬於boofcv.alg.color包,在下文中一共展示了ColorHsv類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: coupledHueSat
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
/**
* HSV stores color information in Hue and Saturation while intensity is in Value. This computes a 2D histogram
* from hue and saturation only, which makes it lighting independent.
*/
public static double[] coupledHueSat(BufferedImage image) {
Planar<GrayF32> rgb = new Planar<>(GrayF32.class, image.getWidth(), image.getHeight(), 3);
Planar<GrayF32> hsv = new Planar<>(GrayF32.class, image.getWidth(), image.getHeight(), 3);
ConvertBufferedImage.convertFrom(image, rgb, true);
ColorHsv.rgbToHsv_F32(rgb, hsv);
Planar<GrayF32> hs = hsv.partialSpectrum(0, 1);
// The number of bins is an important parameter. Try adjusting it
Histogram_F64 histogram = new Histogram_F64(10, 10);
histogram.setRange(0, 0, 2.0 * Math.PI); // range of hue is from 0 to 2PI
histogram.setRange(1, 0, 1.0); // range of saturation is from 0 to 1
// Compute the histogram
GHistogramFeatureOps.histogram(hs, histogram);
histogram.value[0] = 0.0; // remove black
UtilFeature.normalizeL2(histogram); // normalize so that image size doesn't matter
return histogram.value;
}
示例2: printClickedColor
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
/**
* Shows a color image and allows the user to select a pixel, convert it to HSV, print
* the HSV values, and calls the function below to display similar pixels.
*/
public static void printClickedColor( final BufferedImage image ) {
ImagePanel gui = new ImagePanel(image);
gui.addMouseListener(new MouseAdapter() {
@Override
public void mouseClicked(MouseEvent e) {
float[] color = new float[3];
int rgb = image.getRGB(e.getX(),e.getY());
ColorHsv.rgbToHsv((rgb >> 16) & 0xFF,(rgb >> 8) & 0xFF , rgb&0xFF,color);
System.out.println("h = " + color[0]);
System.out.println("s = "+color[1]);
System.out.println("v = "+color[2]);
showSelectedColor("Selected",image,(float)color[0],(float)color[1]);
}
});
ShowImages.showWindow(gui,"Color Selector");
}
示例3: independentHueSat
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
/**
* Computes two independent 1D histograms from hue and saturation. Less affects by sparsity, but can produce
* worse results since the basic assumption that hue and saturation are decoupled is most of the time false.
*/
public static double[] independentHueSat(BufferedImage image) {
// The number of bins is an important parameter. Try adjusting it
TupleDesc_F64 histogramHue = new TupleDesc_F64(5);
TupleDesc_F64 histogramValue = new TupleDesc_F64(5);
List<TupleDesc_F64> histogramList = new ArrayList<>();
histogramList.add(histogramHue); histogramList.add(histogramValue);
Planar<GrayF32> rgb = new Planar<>(GrayF32.class,1,1,3);
Planar<GrayF32> hsv = new Planar<>(GrayF32.class,1,1,3);
rgb.reshape(image.getWidth(), image.getHeight());
hsv.reshape(image.getWidth(), image.getHeight());
ConvertBufferedImage.convertFrom(image, rgb, true);
ColorHsv.rgbToHsv_F32(rgb, hsv);
GHistogramFeatureOps.histogram(hsv.getBand(0), 0, 2*Math.PI,histogramHue);
GHistogramFeatureOps.histogram(hsv.getBand(1), 0, 1, histogramValue);
// need to combine them into a single descriptor for processing later on
TupleDesc_F64 imageHist = UtilFeature.combine(histogramList,null);
UtilFeature.normalizeL2(imageHist); // normalize so that image size doesn't matter
return imageHist.value;
}
示例4: filterBackgroundOut
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
public static BufferedImage filterBackgroundOut(BufferedImage image) {
Planar<GrayF32> input = ConvertBufferedImage.convertFromMulti(image, null, true, GrayF32.class);
Planar<GrayF32> hsv = new Planar<>(GrayF32.class, input.getWidth(), input.getHeight(), 3);
// Convert into HSV
ColorHsv.rgbToHsv_F32(input, hsv);
// Euclidean distance squared threshold for deciding which pixels are members of the selected set
float maxDist2 = 0.4f * 0.4f;
// Extract hue and saturation bands which are independent of intensity
GrayF32 H = hsv.getBand(0);
GrayF32 S = hsv.getBand(1);
float hue = H.get(1, 1);
float saturation = S.get(1, 1);
// Adjust the relative importance of Hue and Saturation.
// Hue has a range of 0 to 2*PI and Saturation from 0 to 1.
float adjustUnits = (float) (Math.PI / 2.0);
// step through each pixel and mark how close it is to the selected color
BufferedImage output = new BufferedImage(input.width, input.height, BufferedImage.TYPE_INT_RGB);
for (int y = 0; y < hsv.height; y++) {
for (int x = 0; x < hsv.width; x++) {
// Hue is an angle in radians, so simple subtraction doesn't work
float dh = UtilAngle.dist(H.unsafe_get(x, y), hue);
float ds = (S.unsafe_get(x, y) - saturation) * adjustUnits;
// this distance measure is a bit naive, but good enough for to demonstrate the concept
float dist2 = dh * dh + ds * ds;
if (dist2 > maxDist2 * 4) {
output.setRGB(x, y, image.getRGB(x, y));
}
}
}
return output;
}
示例5: coupledHueSat
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
/**
* HSV stores color information in Hue and Saturation while intensity is in Value. This computes a 2D histogram
* from hue and saturation only, which makes it lighting independent.
*/
public double[] coupledHueSat(byte[] image) throws IOException {
Planar<GrayF32> rgb = new Planar<GrayF32>(GrayF32.class,1,1,3);
Planar<GrayF32> hsv = new Planar<GrayF32>(GrayF32.class,1,1,3);
BufferedImage buffered = ImageIO.read(new ByteArrayInputStream(image));
if (buffered == null) {
throw new RuntimeException("Can't load image!");
}
rgb.reshape(buffered.getWidth(), buffered.getHeight());
hsv.reshape(buffered.getWidth(), buffered.getHeight());
ConvertBufferedImage.convertFrom(buffered, rgb, true);
ColorHsv.rgbToHsv_F32(rgb, hsv);
Planar<GrayF32> hs = hsv.partialSpectrum(0,1);
// The number of bins is an important parameter. Try adjusting it
Histogram_F64 histogram = new Histogram_F64(12,12);
histogram.setRange(0, 0, 2.0 * Math.PI); // range of hue is from 0 to 2PI
histogram.setRange(1, 0, 1.0); // range of saturation is from 0 to 1
// Compute the histogram
GHistogramFeatureOps.histogram(hs,histogram);
UtilFeature.normalizeL2(histogram); // normalize so that image size doesn't matter
return histogram.value;
}
示例6: showSelectedColor
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
/**
* Selectively displays only pixels which have a similar hue and saturation values to what is provided.
* This is intended to be a simple example of color based segmentation. Color based segmentation can be done
* in RGB color, but is more problematic. More robust techniques can use Gaussian
* models.
*/
public static void showSelectedColor( String name , BufferedImage image , float hue , float saturation ) {
MultiSpectral<ImageFloat32> input = ConvertBufferedImage.convertFromMulti(image,null,ImageFloat32.class);
MultiSpectral<ImageFloat32> hsv = new MultiSpectral<ImageFloat32>(ImageFloat32.class,input.width,input.height,3);
// Ensure the the bands are in RGB order
ConvertBufferedImage.orderBandsIntoRGB(input,image);
// Convert into HSV
ColorHsv.rgbToHsv_F32(input,hsv);
// Pixels which are more than this different from the selected color are set to black
float maxDist2 = 0.4f*0.4f;
// Extract hue and saturation bands which are independent of intensity
ImageFloat32 H = hsv.getBand(0);
ImageFloat32 S = hsv.getBand(1);
// Adjust the relative importance of Hue and Saturation
float adjustUnits = (float)(Math.PI/2.0);
// step through each pixel and mark how close it is to the selected color
BufferedImage output = new BufferedImage(input.width,input.height,BufferedImage.TYPE_INT_RGB);
for( int y = 0; y < hsv.height; y++ ) {
for( int x = 0; x < hsv.width; x++ ) {
// remember Hue is an angle in radians, so simple subtraction doesn't work
float dh = UtilAngle.dist(H.unsafe_get(x,y),hue);
float ds = (S.unsafe_get(x,y)-saturation)*adjustUnits;
// this distance measure is a bit naive, but good enough for this demonstration
float dist2 = dh*dh + ds*ds;
if( dist2 <= maxDist2 ) {
output.setRGB(x,y,image.getRGB(x,y));
}
}
}
ShowImages.showWindow(output,"Showing "+name);
}
示例7: main
import boofcv.alg.color.ColorHsv; //導入依賴的package包/類
public static void main( String args[] ) {
BufferedImage image = UtilImageIO.loadImage("../data/applet/sunflowers.jpg");
// Convert input image into a BoofCV RGB image
MultiSpectral<ImageFloat32> rgb = ConvertBufferedImage.convertFromMulti(image, null, ImageFloat32.class);
ConvertBufferedImage.orderBandsIntoRGB(rgb,image);
//---- convert RGB image into different color formats
MultiSpectral<ImageFloat32> hsv = new MultiSpectral<ImageFloat32>(ImageFloat32.class,rgb.width,rgb.height,3);
ColorHsv.rgbToHsv_F32(rgb, hsv);
MultiSpectral<ImageFloat32> yuv = new MultiSpectral<ImageFloat32>(ImageFloat32.class,rgb.width,rgb.height,3);
ColorYuv.yuvToRgb_F32(rgb, yuv);
//---- Convert individual pixels into different formats
float[] pixelHsv = new float[3];
ColorHsv.rgbToHsv(10,50.6f,120,pixelHsv);
System.out.printf("Found RGB->HSV = %5.2f %5.3f %5.1f\n",pixelHsv[0],pixelHsv[1],pixelHsv[2]);
float[] pixelRgb = new float[3];
ColorHsv.hsvToRgb(pixelHsv[0],pixelHsv[1],pixelHsv[2],pixelRgb);
System.out.printf("Found HSV->RGB = %5.1f %5.1f %5.1f expected 10 50.6 120\n",
pixelRgb[0],pixelRgb[1],pixelRgb[2]);
float[] pixelYuv = new float[3];
ColorYuv.rgbToYuv(10,50.6f,120,pixelYuv);
System.out.printf("Found RGB->YUV = %5.1f %5.1f %5.1f\n",pixelYuv[0],pixelYuv[1],pixelYuv[2]);
ColorYuv.yuvToRgb(pixelYuv[0],pixelYuv[1],pixelYuv[2],pixelRgb);
System.out.printf("Found YUV->RGB = %5.1f %5.1f %5.1f expected 10 50.6 120\n",
pixelRgb[0],pixelRgb[1],pixelRgb[2]);
}