本文整理匯總了Java中beast.core.util.Evaluator類的典型用法代碼示例。如果您正苦於以下問題:Java Evaluator類的具體用法?Java Evaluator怎麽用?Java Evaluator使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
Evaluator類屬於beast.core.util包,在下文中一共展示了Evaluator類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: search_interval
import beast.core.util.Evaluator; //導入依賴的package包/類
double search_interval(Evaluator E, double x0, RealParameter X, Double L, Double R, double logy) {
// assert evaluate(E,x0) > evaluate(E,L) && evaluate(E,x0) > evaluate(E,R);
assert evaluate(E, X, x0) >= logy;
assert L < R;
assert L <= x0 && x0 <= R;
double L0 = L, R0 = R;
double gx0 = evaluate(E, X, x0);
assert logy < gx0;
double x1 = x0;
for (int i = 0; i < 200; i++) {
x1 = L + Randomizer.nextDouble() * (R - L);
double gx1 = evaluate(E, X, x1);
// System.err.println(" L0 = " + L0 + " x0 = " + x0 + " R0 = " + R0 + " gx0 = " + gx0);
// System.err.println(" L = " + L + " x1 = " + x1 + " R = " + R0 + " gx1 = " + gx1);
// System.err.println(" logy = " + logy);
if (gx1 >= logy) return x1;
if (x1 > x0)
R = x1;
else
L = x1;
}
Log.warning.println("Warning! Is size of the interval really ZERO?");
// double logy_x0 = evaluate(E,X,x0);
Log.warning.println(" L0 = " + L0 + " x0 = " + x0 + " R0 = " + R0 + " gx0 = " + gx0);
Log.warning.println(" L = " + L + " x1 = " + x1 + " R = " + R0 + " gx1 = " + evaluate(E));
return x0;
}
示例2: evaluate
import beast.core.util.Evaluator; //導入依賴的package包/類
Double evaluate(Evaluator E) {
return E.evaluate();
}
示例3: find_slice_boundaries_stepping_out
import beast.core.util.Evaluator; //導入依賴的package包/類
Double[] find_slice_boundaries_stepping_out(Evaluator E, RealParameter X, double logy, double w, int m) {
double x0 = X.getValue(0);
assert in_range(X, x0);
double u = Randomizer.nextDouble() * w;
Double L = x0 - u;
Double R = x0 + (w - u);
// Expand the interval until its ends are outside the slice, or until
// the limit on steps is reached.
if (m > 1) {
int J = (int) Math.floor(Randomizer.nextDouble() * m);
int K = (m - 1) - J;
while (J > 0 && (!below_lower_bound(X, L)) && evaluate(E, X, L) > logy) {
L -= w;
J--;
}
while (K > 0 && (!above_upper_bound(X, R)) && evaluate(E, X, R) > logy) {
R += w;
K--;
}
} else {
while ((!below_lower_bound(X, L)) && evaluate(E, X, L) > logy)
L -= w;
while ((!above_upper_bound(X, R)) && evaluate(E, X, R) > logy)
R += w;
}
// Shrink interval to lower and upper bounds.
if (below_lower_bound(X, L))
L = X.getLower();
if (above_upper_bound(X, R))
R = X.getUpper();
assert L < R;
Double[] range = {L, R};
return range;
}
示例4: proposal
import beast.core.util.Evaluator; //導入依賴的package包/類
/**
* override this for proposals,
* returns log of hastingRatio, or Double.NEGATIVE_INFINITY if proposal should not be accepted *
*/
@Override
public double proposal(Evaluator E) {
int m = 100;
RealParameter X = parameterInput.get();
// Find the density at the current point
Double gx0 = evaluate(E);
// System.err.println("gx0 = " + gx0);
// Get the 1st element
Double x0 = X.getValue(0);
// System.err.println("x0 = " + x0);
// Determine the slice level, in log terms.
double logy = gx0 - Randomizer.nextExponential(1);
// Find the initial interval to sample from.
Double[] range = find_slice_boundaries_stepping_out(E, X, logy, windowSize, m);
Double L = range[0];
Double R = range[1];
// Sample from the interval, shrinking it on each rejection
double x_new = search_interval(E, x0, X, L, R, logy);
X.setValue(x_new);
if (n_learning_iterations > 0) {
n_learning_iterations--;
totalDelta += Math.abs(x_new - x0);
totalNumber++;
double W_predicted = totalDelta / totalNumber * 4.0;
if (totalNumber > 3) {
W = 0.95 * W + 0.05 * W_predicted;
windowSize = W;
}
// System.err.println("W = " + W);
}
return Double.POSITIVE_INFINITY;
}
示例5: proposal
import beast.core.util.Evaluator; //導入依賴的package包/類
/**
* Implement this for proposing a new State.
* The proposal is responsible for keeping the State valid,
* and if the State becomes invalid (e.g. a parameter goes out
* of its range) Double.NEGATIVE_INFINITY should be returned.
* <p>
* If the operator is a Gibbs operator, hence the proposal should
* always be accepted, the method should return Double.POSITIVE_INFINITY.
*
* @param evaluator An evaluator object that can be use to repetitively
* used to evaluate the distribution returned by getEvaluatorDistribution().
* @return log of Hastings Ratio, or Double.NEGATIVE_INFINITY if proposal
* should not be accepted (because the proposal is invalid) or
* Double.POSITIVE_INFINITY if the proposal should always be accepted
* (for Gibbs operators).
*/
public double proposal(final Evaluator evaluator) {
return proposal();
}