本文整理匯總了Golang中rsc/io/tmp/bootstrap/internal/obj.Prog.From方法的典型用法代碼示例。如果您正苦於以下問題:Golang Prog.From方法的具體用法?Golang Prog.From怎麽用?Golang Prog.From使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rsc/io/tmp/bootstrap/internal/obj.Prog
的用法示例。
在下文中一共展示了Prog.From方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: progedit
func progedit(ctxt *obj.Link, p *obj.Prog) {
// Maintain information about code generation mode.
if ctxt.Mode == 0 {
ctxt.Mode = ctxt.Arch.Regsize * 8
}
p.Mode = int8(ctxt.Mode)
switch p.As {
case AMODE:
if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) {
switch int(p.From.Offset) {
case 16, 32, 64:
ctxt.Mode = int(p.From.Offset)
}
}
obj.Nopout(p)
}
// Thread-local storage references use the TLS pseudo-register.
// As a register, TLS refers to the thread-local storage base, and it
// can only be loaded into another register:
//
// MOVQ TLS, AX
//
// An offset from the thread-local storage base is written off(reg)(TLS*1).
// Semantically it is off(reg), but the (TLS*1) annotation marks this as
// indexing from the loaded TLS base. This emits a relocation so that
// if the linker needs to adjust the offset, it can. For example:
//
// MOVQ TLS, AX
// MOVQ 0(AX)(TLS*1), CX // load g into CX
//
// On systems that support direct access to the TLS memory, this
// pair of instructions can be reduced to a direct TLS memory reference:
//
// MOVQ 0(TLS), CX // load g into CX
//
// The 2-instruction and 1-instruction forms correspond to the two code
// sequences for loading a TLS variable in the local exec model given in "ELF
// Handling For Thread-Local Storage".
//
// We apply this rewrite on systems that support the 1-instruction form.
// The decision is made using only the operating system and the -shared flag,
// not the link mode. If some link modes on a particular operating system
// require the 2-instruction form, then all builds for that operating system
// will use the 2-instruction form, so that the link mode decision can be
// delayed to link time.
//
// In this way, all supported systems use identical instructions to
// access TLS, and they are rewritten appropriately first here in
// liblink and then finally using relocations in the linker.
//
// When -shared is passed, we leave the code in the 2-instruction form but
// assemble (and relocate) them in different ways to generate the initial
// exec code sequence. It's a bit of a fluke that this is possible without
// rewriting the instructions more comprehensively, and it only does because
// we only support a single TLS variable (g).
if canuse1insntls(ctxt) {
// Reduce 2-instruction sequence to 1-instruction sequence.
// Sequences like
// MOVQ TLS, BX
// ... off(BX)(TLS*1) ...
// become
// NOP
// ... off(TLS) ...
//
// TODO(rsc): Remove the Hsolaris special case. It exists only to
// guarantee we are producing byte-identical binaries as before this code.
// But it should be unnecessary.
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris {
obj.Nopout(p)
}
if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 {
p.From.Reg = REG_TLS
p.From.Scale = 0
p.From.Index = REG_NONE
}
if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
p.To.Reg = REG_TLS
p.To.Scale = 0
p.To.Index = REG_NONE
}
} else {
// load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it
// as the 2-instruction sequence if necessary.
// MOVQ 0(TLS), BX
// becomes
// MOVQ TLS, BX
// MOVQ 0(BX)(TLS*1), BX
if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 {
q := obj.Appendp(ctxt, p)
q.As = p.As
q.From = p.From
q.From.Type = obj.TYPE_MEM
q.From.Reg = p.To.Reg
q.From.Index = REG_TLS
q.From.Scale = 2 // TODO: use 1
q.To = p.To
//.........這裏部分代碼省略.........
示例2: peep
func peep(firstp *obj.Prog) {
g := (*gc.Graph)(gc.Flowstart(firstp, nil))
if g == nil {
return
}
gactive = 0
// byte, word arithmetic elimination.
elimshortmov(g)
// constant propagation
// find MOV $con,R followed by
// another MOV $con,R without
// setting R in the interim
var p *obj.Prog
for r := (*gc.Flow)(g.Start); r != nil; r = r.Link {
p = r.Prog
switch p.As {
case x86.ALEAL,
x86.ALEAQ:
if regtyp(&p.To) {
if p.From.Sym != nil {
if p.From.Index == x86.REG_NONE {
conprop(r)
}
}
}
case x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ,
x86.AMOVSS,
x86.AMOVSD:
if regtyp(&p.To) {
if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST {
conprop(r)
}
}
}
}
var r *gc.Flow
var r1 *gc.Flow
var p1 *obj.Prog
var t int
loop1:
if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
gc.Dumpit("loop1", g.Start, 0)
}
t = 0
for r = g.Start; r != nil; r = r.Link {
p = r.Prog
switch p.As {
case x86.AMOVL,
x86.AMOVQ,
x86.AMOVSS,
x86.AMOVSD:
if regtyp(&p.To) {
if regtyp(&p.From) {
if copyprop(g, r) {
excise(r)
t++
} else if subprop(r) && copyprop(g, r) {
excise(r)
t++
}
}
}
case x86.AMOVBLZX,
x86.AMOVWLZX,
x86.AMOVBLSX,
x86.AMOVWLSX:
if regtyp(&p.To) {
r1 = rnops(gc.Uniqs(r))
if r1 != nil {
p1 = r1.Prog
if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg {
p1.As = x86.AMOVL
t++
}
}
}
case x86.AMOVBQSX,
x86.AMOVBQZX,
x86.AMOVWQSX,
x86.AMOVWQZX,
x86.AMOVLQSX,
x86.AMOVLQZX,
x86.AMOVQL:
if regtyp(&p.To) {
r1 = rnops(gc.Uniqs(r))
if r1 != nil {
p1 = r1.Prog
if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg {
p1.As = x86.AMOVQ
t++
//.........這裏部分代碼省略.........