本文整理匯總了Golang中rsc/io/tmp/bootstrap/internal/obj.Addr.Type方法的典型用法代碼示例。如果您正苦於以下問題:Golang Addr.Type方法的具體用法?Golang Addr.Type怎麽用?Golang Addr.Type使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類rsc/io/tmp/bootstrap/internal/obj.Addr
的用法示例。
在下文中一共展示了Addr.Type方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: datagostring
func datagostring(sval string, a *obj.Addr) {
sym := stringsym(sval)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(sym)
a.Node = sym.Def
a.Offset = 0 // header
a.Etype = TSTRING
}
示例2: Datastring
func Datastring(s string, a *obj.Addr) {
sym := stringsym(s)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(sym)
a.Node = sym.Def
a.Offset = int64(Widthptr) + int64(Widthint) // skip header
a.Etype = Simtype[TINT]
}
示例3: addreg
func addreg(a *obj.Addr, rn int) {
a.Sym = nil
a.Node = nil
a.Offset = 0
a.Type = obj.TYPE_REG
a.Reg = int16(rn)
a.Name = 0
Ostats.Ncvtreg++
}
示例4: mkvar
func mkvar(f *Flow, a *obj.Addr) Bits {
/*
* mark registers used
*/
if a.Type == obj.TYPE_NONE {
return zbits
}
r := f.Data.(*Reg)
r.use1.b[0] |= Thearch.Doregbits(int(a.Index)) // TODO: Use RtoB
var n int
switch a.Type {
default:
regu := Thearch.Doregbits(int(a.Reg)) | Thearch.RtoB(int(a.Reg)) // TODO: Use RtoB
if regu == 0 {
return zbits
}
bit := zbits
bit.b[0] = regu
return bit
// TODO(rsc): Remove special case here.
case obj.TYPE_ADDR:
var bit Bits
if Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' {
goto memcase
}
a.Type = obj.TYPE_MEM
bit = mkvar(f, a)
setaddrs(bit)
a.Type = obj.TYPE_ADDR
Ostats.Naddr++
return zbits
memcase:
fallthrough
case obj.TYPE_MEM:
if r != nil {
r.use1.b[0] |= Thearch.RtoB(int(a.Reg))
}
/* NOTE: 5g did
if(r->f.prog->scond & (C_PBIT|C_WBIT))
r->set.b[0] |= RtoB(a->reg);
*/
switch a.Name {
default:
// Note: This case handles NAME_EXTERN and NAME_STATIC.
// We treat these as requiring eager writes to memory, due to
// the possibility of a fault handler looking at them, so there is
// not much point in registerizing the loads.
// If we later choose the set of candidate variables from a
// larger list, these cases could be deprioritized instead of
// removed entirely.
return zbits
case obj.NAME_PARAM,
obj.NAME_AUTO:
n = int(a.Name)
}
}
node, _ := a.Node.(*Node)
if node == nil || node.Op != ONAME || node.Orig == nil {
return zbits
}
node = node.Orig
if node.Orig != node {
Fatal("%v: bad node", Ctxt.Dconv(a))
}
if node.Sym == nil || node.Sym.Name[0] == '.' {
return zbits
}
et := int(a.Etype)
o := a.Offset
w := a.Width
if w < 0 {
Fatal("bad width %d for %v", w, Ctxt.Dconv(a))
}
flag := 0
var v *Var
for i := 0; i < nvar; i++ {
v = &vars[i]
if v.node == node && int(v.name) == n {
if v.offset == o {
if int(v.etype) == et {
if int64(v.width) == w {
// TODO(rsc): Remove special case for arm here.
if flag == 0 || Thearch.Thechar != '5' {
return blsh(uint(i))
}
}
}
}
// if they overlap, disable both
if overlap_reg(v.offset, v.width, o, int(w)) {
//.........這裏部分代碼省略.........
示例5: Naddr
// Naddr rewrites a to refer to n.
// It assumes that a is zeroed on entry.
func Naddr(a *obj.Addr, n *Node) {
if n == nil {
return
}
if n.Type != nil && n.Type.Etype != TIDEAL {
// TODO(rsc): This is undone by the selective clearing of width below,
// to match architectures that were not as aggressive in setting width
// during naddr. Those widths must be cleared to avoid triggering
// failures in gins when it detects real but heretofore latent (and one
// hopes innocuous) type mismatches.
// The type mismatches should be fixed and the clearing below removed.
dowidth(n.Type)
a.Width = n.Type.Width
}
switch n.Op {
default:
a := a // copy to let escape into Ctxt.Dconv
Debug['h'] = 1
Dump("naddr", n)
Fatal("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a))
case OREGISTER:
a.Type = obj.TYPE_REG
a.Reg = n.Reg
a.Sym = nil
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
case OINDREG:
a.Type = obj.TYPE_MEM
a.Reg = n.Reg
a.Sym = Linksym(n.Sym)
a.Offset = n.Xoffset
if a.Offset != int64(int32(a.Offset)) {
Yyerror("offset %d too large for OINDREG", a.Offset)
}
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
case OPARAM:
a.Etype = Simtype[n.Left.Type.Etype]
a.Width = n.Left.Type.Width
a.Offset = n.Xoffset
a.Sym = Linksym(n.Left.Sym)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_PARAM
a.Node = n.Left.Orig
case OCLOSUREVAR:
if !Curfn.Func.Needctxt {
Fatal("closurevar without needctxt")
}
a.Type = obj.TYPE_MEM
a.Reg = int16(Thearch.REGCTXT)
a.Sym = nil
a.Offset = n.Xoffset
case OCFUNC:
Naddr(a, n.Left)
a.Sym = Linksym(n.Left.Sym)
case ONAME:
a.Etype = 0
if n.Type != nil {
a.Etype = Simtype[n.Type.Etype]
}
a.Offset = n.Xoffset
s := n.Sym
a.Node = n.Orig
//if(a->node >= (Node*)&n)
// fatal("stack node");
if s == nil {
s = Lookup(".noname")
}
if n.Method {
if n.Type != nil {
if n.Type.Sym != nil {
if n.Type.Sym.Pkg != nil {
s = Pkglookup(s.Name, n.Type.Sym.Pkg)
}
}
}
}
a.Type = obj.TYPE_MEM
switch n.Class {
default:
Fatal("naddr: ONAME class %v %d\n", n.Sym, n.Class)
//.........這裏部分代碼省略.........
示例6: Afunclit
func Afunclit(a *obj.Addr, n *Node) {
if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN {
a.Type = obj.TYPE_MEM
a.Sym = Linksym(n.Sym)
}
}
示例7: sudoaddable
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
if n.Type == nil {
return false
}
*a = obj.Addr{}
switch n.Op {
case gc.OLITERAL:
if !gc.Isconst(n, gc.CTINT) {
break
}
v := gc.Mpgetfix(n.Val.U.Xval)
if v >= 32000 || v <= -32000 {
break
}
switch as {
default:
return false
case x86.AADDB,
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
//.........這裏部分代碼省略.........