本文整理匯總了Golang中nimble-cube/dump.Frame類的典型用法代碼示例。如果您正苦於以下問題:Golang Frame類的具體用法?Golang Frame怎麽用?Golang Frame使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Frame類的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: writeVTKHeader
func writeVTKHeader(out io.Writer, q *dump.Frame) {
gridsize := q.Size()[1:]
fmt.Fprintln(out, "<?xml version=\"1.0\"?>")
fmt.Fprintln(out, "<VTKFile type=\"StructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\">")
fmt.Fprintf(out, "\t<StructuredGrid WholeExtent=\"0 %d 0 %d 0 %d\">\n", gridsize[Z]-1, gridsize[Y]-1, gridsize[X]-1)
fmt.Fprintf(out, "\t\t<Piece Extent=\"0 %d 0 %d 0 %d\">\n", gridsize[Z]-1, gridsize[Y]-1, gridsize[X]-1)
}
示例2: dumpGnuplotGZip
func dumpGnuplotGZip(f *dump.Frame, file string) {
out, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
out_gzip, err1 := gzip.NewWriterLevel(out, gzip.BestSpeed)
core.Fatal(err1)
out_buffered := bufio.NewWriter(out_gzip)
defer func() {
out_buffered.Flush()
out_gzip.Close()
out.Close()
}()
data := f.Tensors()
gridsize := f.Size()[1:]
cellsize := f.MeshStep
ncomp := len(data)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
x := float64(i) * cellsize[X]
for j := 0; j < gridsize[Y]; j++ {
y := float64(j) * cellsize[Y]
for k := 0; k < gridsize[Z]; k++ {
z := float64(k) * cellsize[Z]
_, err := fmt.Fprint(out_buffered, z, " ", y, " ", x, "\t")
core.Fatal(err)
for c := 0; c < ncomp; c++ {
_, err := fmt.Fprint(out_buffered, data[core.SwapIndex(c, ncomp)][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err = fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
_, err := fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
core.Fatal(err)
}
out_buffered.Flush()
}
示例3: writeVTKPoints
func writeVTKPoints(out io.Writer, q *dump.Frame, dataformat string) {
fmt.Fprintln(out, "\t\t\t<Points>")
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"points\" NumberOfComponents=\"3\" format=\"%s\">\n", dataformat)
gridsize := q.Size()[1:]
cellsize := q.MeshStep
switch dataformat {
case "ascii":
for k := 0; k < gridsize[X]; k++ {
for j := 0; j < gridsize[Y]; j++ {
for i := 0; i < gridsize[Z]; i++ {
x := (float32)(i) * (float32)(cellsize[Z])
y := (float32)(j) * (float32)(cellsize[Y])
z := (float32)(k) * (float32)(cellsize[X])
_, err := fmt.Fprint(out, x, " ", y, " ", z, " ")
core.Fatal(err)
}
}
}
case "binary":
// Conversion form float32 [4]byte in big-endian
// encoding/binary is too slow
// Inlined for performance, terabytes of data will pass here...
var bytes []byte
for k := 0; k < gridsize[X]; k++ {
for j := 0; j < gridsize[Y]; j++ {
for i := 0; i < gridsize[Z]; i++ {
x := (float32)(i) * (float32)(cellsize[Z])
y := (float32)(j) * (float32)(cellsize[Y])
z := (float32)(k) * (float32)(cellsize[X])
bytes = (*[4]byte)(unsafe.Pointer(&x))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&y))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&z))[:]
out.Write(bytes)
}
}
}
default:
core.Fatal(fmt.Errorf("Illegal VTK data format: %v. Options are: ascii, binary", dataformat))
}
fmt.Fprintln(out, "</DataArray>")
fmt.Fprintln(out, "\t\t\t</Points>")
}
示例4: dumpGnuplot
func dumpGnuplot(f *dump.Frame, file string) {
out_, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
defer out_.Close()
out_buffered := bufio.NewWriter(out_)
defer out_buffered.Flush()
data := f.Tensors()
gridsize := f.Size()[1:]
cellsize := f.MeshStep
// If no cell size is set, use generic cell index.
if cellsize == [3]float64{0, 0, 0} {
cellsize = [3]float64{1, 1, 1}
}
ncomp := f.Components
core.Assert(ncomp > 0)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
x := float64(i) * cellsize[X]
for j := 0; j < gridsize[Y]; j++ {
y := float64(j) * cellsize[Y]
for k := 0; k < gridsize[Z]; k++ {
z := float64(k) * cellsize[Z]
_, err := fmt.Fprint(out_buffered, z, " ", y, " ", x, "\t")
core.Fatal(err)
for c := 0; c < ncomp; c++ {
_, err := fmt.Fprint(out_buffered, data[core.SwapIndex(c, ncomp)][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err = fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
_, err := fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
core.Fatal(err)
}
}
示例5: normalize
// normalize vector data to unit length
func normalize(f *dump.Frame) {
a := f.Vectors()
for i := range a[0] {
for j := range a[0][i] {
for k := range a[0][i][j] {
x, y, z := a[0][i][j][k], a[1][i][j][k], a[2][i][j][k]
norm := math.Sqrt(float64(x*x + y*y + z*z))
invnorm := float32(1)
if norm != 0 {
invnorm = float32(1 / norm)
}
a[0][i][j][k] *= invnorm
a[1][i][j][k] *= invnorm
a[2][i][j][k] *= invnorm
}
}
}
}
示例6: process
func process(f *dump.Frame, name string) {
preprocess(f)
haveOutput := false
if *flag_jpeg {
dumpImage(f, noExt(name)+".jpg")
haveOutput = true
}
if *flag_png {
dumpImage(f, noExt(name)+".png")
haveOutput = true
}
if *flag_gnuplot {
dumpGnuplot(f, noExt(name)+".gplot")
haveOutput = true
}
if *flag_gnuplotgzip {
dumpGnuplotGZip(f, noExt(name)+".gplot.gz")
haveOutput = true
}
if *flag_omf != "" {
dumpOmf(noExt(name)+".omf", f, *flag_omf)
haveOutput = true
}
if *flag_vtk != "" {
dumpVTK(noExt(name)+".vtk", f, *flag_vtk)
haveOutput = true
}
if !haveOutput || *flag_show {
f.Fprintf(os.Stdout, *flag_format)
haveOutput = true
}
}
示例7: writeOmfBinary4
// Writes data in OMF Binary 4 format
func writeOmfBinary4(out io.Writer, array *dump.Frame) {
data := array.Tensors()
gridsize := array.Size()[1:]
var bytes []byte
// OOMMF requires this number to be first to check the format
var controlnumber float32 = OMF_CONTROL_NUMBER
// Conversion form float32 [4]byte in big-endian
// Inlined for performance, terabytes of data will pass here...
bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:]
bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0] // swap endianess
out.Write(bytes)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
ncomp := array.Size()[0]
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
for c := 0; c < ncomp; c++ {
// dirty conversion from float32 to [4]byte
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(c, ncomp)][i][j][k]))[:]
bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0]
out.Write(bytes)
}
}
}
}
}
示例8: writeOmfHeader
// Writes the OMF header
func writeOmfHeader(out io.Writer, q *dump.Frame) {
gridsize := q.Size()[1:]
cellsize := q.MeshStep
hdr(out, "OOMMF", "rectangular mesh v1.0")
hdr(out, "Segment count", "1")
hdr(out, "Begin", "Segment")
hdr(out, "Begin", "Header")
dsc(out, "Time", q.Time)
hdr(out, "Title", q.DataLabel)
hdr(out, "meshtype", "rectangular")
hdr(out, "meshunit", q.MeshUnit)
hdr(out, "xbase", cellsize[Z]/2)
hdr(out, "ybase", cellsize[Y]/2)
hdr(out, "zbase", cellsize[X]/2)
hdr(out, "xstepsize", cellsize[Z])
hdr(out, "ystepsize", cellsize[Y])
hdr(out, "zstepsize", cellsize[X])
hdr(out, "xmin", 0)
hdr(out, "ymin", 0)
hdr(out, "zmin", 0)
hdr(out, "xmax", cellsize[Z]*float64(gridsize[Z]))
hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y]))
hdr(out, "zmax", cellsize[X]*float64(gridsize[X]))
hdr(out, "xnodes", gridsize[Z])
hdr(out, "ynodes", gridsize[Y])
hdr(out, "znodes", gridsize[X])
hdr(out, "ValueRangeMinMag", 1e-08) // not so "optional" as the OOMMF manual suggests...
hdr(out, "ValueRangeMaxMag", 1) // TODO
hdr(out, "valueunit", "?")
hdr(out, "valuemultiplier", 1)
hdr(out, "End", "Header")
}
示例9: writeOmfText
// Writes data in OMF Text format
func writeOmfText(out io.Writer, tens *dump.Frame) {
data := tens.Tensors()
gridsize := tens.Size()[1:]
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
for c := 0; c < tens.Size()[0]; c++ {
_, err := fmt.Fprint(out, data[core.SwapIndex(c, tens.Size()[0])][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err := fmt.Fprint(out, "\n")
core.Fatal(err)
}
}
}
}
示例10: dumpImage
func dumpImage(f *dump.Frame, file string) {
var img *image.NRGBA
{
dim := f.Size()[0]
switch dim {
default:
core.Fatal(fmt.Errorf("unsupported number of components: %v", dim))
case 3:
img = DrawVectors(f.Vectors())
case 1:
min, max := extrema(f.Data)
if *flag_min != "auto" {
m, err := strconv.ParseFloat(*flag_min, 32)
core.Fatal(err)
min = float32(m)
}
if *flag_max != "auto" {
m, err := strconv.ParseFloat(*flag_max, 32)
core.Fatal(err)
max = float32(m)
}
img = DrawFloats(f.Floats(), min, max)
}
}
out, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
defer out.Close()
ext := path.Ext(file)
switch ext {
default:
core.Fatal(fmt.Errorf("unsupported image type: %v", ext))
case ".png":
core.Fatal(png.Encode(out, img))
case ".jpg":
core.Fatal(jpeg.Encode(out, img, nil))
}
}
示例11: writeVTKCellData
func writeVTKCellData(out io.Writer, q *dump.Frame, dataformat string) {
N := q.Size()[0]
data := q.Tensors()
switch N {
case 1:
fmt.Fprintf(out, "\t\t\t<PointData Scalars=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, N, dataformat)
case 3:
fmt.Fprintf(out, "\t\t\t<PointData Vectors=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, N, dataformat)
case 6, 9:
fmt.Fprintf(out, "\t\t\t<PointData Tensors=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, 9, dataformat) // must be 9!
default:
core.Fatal(fmt.Errorf("vtk: cannot handle %v components"))
}
gridsize := q.MeshSize
switch dataformat {
case "ascii":
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
// if symmetric tensor manage it appart to write the full 9 components
if N == 6 {
fmt.Fprint(out, data[core.SwapIndex(0, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(1, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(2, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(1, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(3, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(4, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(2, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(4, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(5, 9)][i][j][k], " ")
} else {
for c := 0; c < N; c++ {
fmt.Fprint(out, data[core.SwapIndex(c, N)][i][j][k], " ")
}
}
}
}
}
case "binary":
// Inlined for performance, terabytes of data will pass here...
var bytes []byte
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
// if symmetric tensor manage it appart to write the full 9 components
if N == 6 {
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(0, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(1, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(2, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(1, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(3, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(4, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(2, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(4, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(5, 9)][i][j][k]))[:]
out.Write(bytes)
} else {
for c := 0; c < N; c++ {
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(c, N)][i][j][k]))[:]
out.Write(bytes)
}
}
}
}
}
default:
core.Fatal(fmt.Errorf("vtk: illegal data format " + dataformat + ". Options are: ascii, binary"))
}
fmt.Fprintln(out, "</DataArray>")
fmt.Fprintln(out, "\t\t\t</PointData>")
}