本文整理匯總了Golang中math/rand.NormFloat64函數的典型用法代碼示例。如果您正苦於以下問題:Golang NormFloat64函數的具體用法?Golang NormFloat64怎麽用?Golang NormFloat64使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了NormFloat64函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: main
func main() {
rand.Seed(time.Now().Unix())
flag.Parse()
data := LoadData(*idstr)
avail := 0
sample := len(data.Points) / 10
for j := 0; j < sample; j++ {
//sample a few routes, prefere close routes
idx1 := rand.Intn(len(data.Points))
target_x := data.Points[idx1].X + rand.NormFloat64()*150
target_y := data.Points[idx1].Y + rand.NormFloat64()*150
idx2 := 0
mindist := 999999.0
for id, val := range data.Points {
if id == idx1 {
continue
}
dist := Distance(&plotter.Point{target_x, target_y}, val)
if dist < mindist {
mindist = dist
idx2 = id
}
}
pathes := calcPathesFromTo(idx1, idx2, data.Matrix, 6)
indep := IndependentPathes(pathes)
fmt.Println(j, "/", sample)
avail += len(indep)
}
a := float64(avail) / float64(sample)
f, _ := os.Create(*idstr + ".indepPathes.txt")
f.Write([]byte(fmt.Sprintf("%v\n", a)))
fmt.Println(a)
}
示例2: TestConvLayerBatchR
func TestConvLayerBatchR(t *testing.T) {
layer := &ConvLayer{
FilterCount: 3,
FilterWidth: 2,
FilterHeight: 4,
Stride: 2,
InputHeight: 17,
InputWidth: 19,
InputDepth: 5,
}
layer.Randomize()
n := 3
batchInput := make(linalg.Vector, n*layer.InputWidth*layer.InputHeight*layer.InputDepth)
for i := range batchInput {
batchInput[i] = rand.NormFloat64()
}
batchRes := &autofunc.Variable{Vector: batchInput}
params := []*autofunc.Variable{batchRes, layer.Biases, layer.FilterVar}
rVec := autofunc.RVector{}
for _, param := range params {
vec := make(linalg.Vector, len(param.Vector))
for i := range vec {
vec[i] = rand.NormFloat64()
}
rVec[param] = vec
}
testRBatcher(t, rVec, layer, autofunc.NewRVariable(batchRes, rVec), n, params)
}
示例3: benchmarkConvLayer
func benchmarkConvLayer(b *testing.B, layer *ConvLayer) {
b.Run("Forward", func(b *testing.B) {
benchmarkConvLayerForward(b, layer)
})
b.Run("Backward", func(b *testing.B) {
benchmarkConvLayerBackward(b, layer)
})
b.Run("Parallel", func(b *testing.B) {
parallelism := runtime.GOMAXPROCS(0)
inputs := make(chan *autofunc.Variable, parallelism)
upstreams := make(chan linalg.Vector, parallelism)
grads := make(chan autofunc.Gradient, parallelism)
for i := 0; i < parallelism; i++ {
testInput := NewTensor3(layer.InputWidth, layer.InputHeight, layer.InputDepth)
for i := range testInput.Data {
testInput.Data[i] = rand.NormFloat64()
}
inputVar := &autofunc.Variable{Vector: testInput.Data}
inputs <- inputVar
upstream := make(linalg.Vector, len(layer.Apply(inputVar).Output()))
for i := range upstream {
upstream[i] = rand.NormFloat64()
}
upstreams <- upstream
grad := autofunc.NewGradient(layer.Parameters())
grads <- grad
}
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
benchmarkConvLayerParallel(pb, layer, <-inputs, <-upstreams, <-grads)
})
})
}
示例4: TestMatMul
func TestMatMul(t *testing.T) {
const (
m = 3
k = 4
n = 5
)
alpha := rand.NormFloat64()
a, b := randMat(m, k), randMat(k, n)
got := blas.MatMul(alpha, a, b)
want := mat.Scale(alpha, mat.Mul(a, b))
checkEqualMat(t, want, got, 1e-9)
// Try with non-copying transposes.
alpha = rand.NormFloat64()
a, b = randMat(k, m).T(), randMat(k, n)
got = blas.MatMul(alpha, a, b)
want = mat.Scale(alpha, mat.Mul(a, b))
checkEqualMat(t, want, got, 1e-9)
alpha = rand.NormFloat64()
a, b = randMat(m, k), randMat(n, k).T()
got = blas.MatMul(alpha, a, b)
want = mat.Scale(alpha, mat.Mul(a, b))
checkEqualMat(t, want, got, 1e-9)
alpha = rand.NormFloat64()
a, b = randMat(k, m).T(), randMat(n, k).T()
got = blas.MatMul(alpha, a, b)
want = mat.Scale(alpha, mat.Mul(a, b))
checkEqualMat(t, want, got, 1e-9)
}
示例5: TestMaxPoolingBatchR
func TestMaxPoolingBatchR(t *testing.T) {
layer := &MaxPoolingLayer{
XSpan: 5,
YSpan: 4,
InputWidth: 17,
InputHeight: 19,
InputDepth: 3,
}
n := 3
batchInput := make(linalg.Vector, n*layer.InputWidth*layer.InputHeight*layer.InputDepth)
for i := range batchInput {
batchInput[i] = rand.NormFloat64()
}
batchRes := &autofunc.Variable{Vector: batchInput}
rVec := autofunc.RVector{
batchRes: make(linalg.Vector, len(batchInput)),
}
for i := range rVec[batchRes] {
rVec[batchRes][i] = rand.NormFloat64()
}
testRBatcher(t, rVec, layer, autofunc.NewRVariable(batchRes, rVec),
n, []*autofunc.Variable{batchRes})
}
示例6: TestSolveLUVec
func (s *S) TestSolveLUVec(c *check.C) {
for _, n := range []int{5, 10} {
a := NewDense(n, n, nil)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rand.NormFloat64())
}
}
b := NewVector(n, nil)
for i := 0; i < n; i++ {
b.SetVec(i, rand.NormFloat64())
}
var lu LU
lu.Factorize(a)
var x Vector
if err := x.SolveLUVec(&lu, false, b); err != nil {
continue
}
var got Vector
got.MulVec(a, &x)
if !got.EqualsApproxVec(b, 1e-12) {
c.Error("Solve mismatch n = %v.\nWant: %v\nGot: %v", n, b, got)
}
}
// TODO(btracey): Add testOneInput test when such a function exists.
}
示例7: Point3dNormal
// Return a random point from the Normal distribution.
//
func Point3dNormal() Point3d {
return Point3d{
rand.NormFloat64(),
rand.NormFloat64(),
rand.NormFloat64(),
}
}
示例8: addNode
func (b *block) addNode(n node) {
if !b.nodes[n] {
b.Add(n)
n.Move(Pt(rand.NormFloat64(), rand.NormFloat64()))
b.nodes[n] = true
n.setBlock(b)
switch n := n.(type) {
case *callNode:
if n.obj != nil && !isMethod(n.obj) {
b.func_().addPkgRef(n.obj)
}
case *compositeLiteralNode:
// handled in compositeLiteralNode.setType
case *valueNode:
switch obj := n.obj.(type) {
case *types.Const, *types.Var:
b.func_().addPkgRef(obj)
case *types.Func:
if !isMethod(obj) {
b.func_().addPkgRef(obj)
}
}
}
rearrange(b)
}
}
示例9: Noise
func Noise(l int) *ComplexV {
r := Zeros(l)
for k, _ := range *r {
(*r)[k] = complex(rand.NormFloat64(), rand.NormFloat64())
}
return r
}
示例10: generateMoveTrack
func generateMoveTrack(xPosAnswer int) [][]int {
totalFrames := int(xPosAnswer/2) + rand.Intn(5)
moveTrack := make([][]int, totalFrames)
moveTrack[0] = []int{int(-rand.NormFloat64()*8.0 - 20.0), int(-rand.NormFloat64()*8.0 - 20.0), 0}
moveTrack[1] = []int{0, 0, 0}
periodParam := rand.Float64()
for i := 2; i < totalFrames; i++ {
moveTrack[i] = []int{0, int(math.Sin(float64(i)*periodParam*0.08) * 4.0), i*8 + rand.Intn(5)}
}
xPosBitmap := make([]bool, xPosAnswer)
for i := 0; i < totalFrames-4; {
t := &xPosBitmap[rand.Intn(xPosAnswer-1)]
if !*t {
*t = true
i++
}
}
xPosBitmap[xPosAnswer-1] = true
k := 2
for i, v := range xPosBitmap {
if v {
moveTrack[k][0] = i + 1
k++
}
}
copy(moveTrack[totalFrames-1], moveTrack[totalFrames-2])
moveTrack[totalFrames-1][2] += 100 + rand.Intn(300)
return moveTrack
}
示例11: tree0
func tree0(f croot.File) {
// create a tree
tree := croot.NewTree("tree", "tree", 32)
e := &Event{}
const bufsiz = 32000
tree.Branch("evt", e, bufsiz, 0)
// fill some events with random numbers
nevents := *evtmax
for iev := 0; iev != nevents; iev++ {
if iev%1000 == 0 {
fmt.Printf(":: processing event %d...\n", iev)
}
// the two energies follow a gaussian distribution
e.A.E = rand.NormFloat64() //ea
e.B.E = rand.NormFloat64() //eb
e.A.T = croot.GRandom.Rndm(1)
e.B.T = e.A.T * croot.GRandom.Gaus(0., 1.)
if iev%1000 == 0 {
fmt.Printf("ievt: %d\n", iev)
fmt.Printf("evt.a.e= %8.3f\n", e.A.E)
fmt.Printf("evt.a.t= %8.3f\n", e.A.T)
fmt.Printf("evt.b.e= %8.3f\n", e.B.E)
fmt.Printf("evt.b.t= %8.3f\n", e.B.T)
}
tree.Fill()
}
f.Write("", 0, 0)
}
示例12: testBatchRGradienter
func testBatchRGradienter(t *testing.T, batchSize int, b *BatchRGradienter) {
rand.Seed(batchRGradienterSeed)
net := Network{
&DenseLayer{
InputCount: 10,
OutputCount: 30,
},
&Sigmoid{},
&DenseLayer{
InputCount: 30,
OutputCount: 3,
},
&Sigmoid{},
}
net.Randomize()
b.Learner = net.BatchLearner()
inputs := make([]linalg.Vector, batchSize)
outputs := make([]linalg.Vector, batchSize)
for i := range inputs {
inputVec := make(linalg.Vector, 10)
outputVec := make(linalg.Vector, 3)
for j := range inputVec {
inputVec[j] = rand.NormFloat64()
}
for j := range outputVec {
outputVec[j] = rand.Float64()
}
inputs[i] = inputVec
outputs[i] = outputVec
}
samples := VectorSampleSet(inputs, outputs)
rVector := autofunc.RVector(autofunc.NewGradient(net.Parameters()))
for _, vec := range rVector {
for i := range vec {
vec[i] = rand.NormFloat64()
}
}
single := SingleRGradienter{Learner: net, CostFunc: b.CostFunc}
expectedGrad := single.Gradient(samples)
actualGrad := b.Gradient(samples)
if !vecMapsEqual(expectedGrad, actualGrad) {
t.Error("bad gradient from Gradient()")
}
expectedGrad, expectedRGrad := single.RGradient(rVector, samples)
actualGrad, actualRGrad := b.RGradient(rVector, samples)
if !vecMapsEqual(expectedGrad, actualGrad) {
t.Error("bad gradient from RGradient()")
}
if !vecMapsEqual(expectedRGrad, actualRGrad) {
t.Error("bad r-gradient from RGradient()")
}
}
示例13: Run
func (*Tool) Run(args []string) {
fmt.Println("running logistic regression")
n := 1000
p := 10
beta := make([]float64, p)
beta[0] = rand.NormFloat64()
beta[1] = rand.NormFloat64()
x := la.NewMatrix(n, p)
y := la.NewVector(n)
for i := 0; i < n; i++ {
v := randVec(p)
var z float64
for j := 0; j < p; j++ {
x.Set(i, j, v[j])
z += beta[j]
}
if z > 0 {
y.Set(i, +1)
} else {
y.Set(i, -1)
}
}
rp := &model.RegressionProblem{
N: n,
P: p,
Data: x,
Response: y,
ColumnNames: names("p", p),
RowNames: names("x", n),
ResponseName: "y",
}
rc := &model.LogisticRegressionRisk{}
pc := model.NewLassoPenalty(p)
dv := 0.001
vmax := 0.07
mon := &FixedVMonitor{vmax}
oa := &model.RandomAssigner{rp.Data.Rows, 2.0 / 3.0}
tt := oa.Assign()
results := model.RunGpsFull(rp, tt, dv, rc, pc, mon.Continue)
fmt.Println(results)
}
示例14: ComplexNormal
// Create random matrix with element's real and imaginary parts
// from [0.0, 1.0).
func ComplexNormal(rows, cols int) *ComplexMatrix {
A := ComplexZeros(rows, cols)
for i, _ := range A.elements {
re := rand.NormFloat64()
im := rand.NormFloat64()
A.elements[i] = complex(re, im)
}
return A
}
示例15: CreateIndis
func CreateIndis(anzindis int64, stddev, center_x, center_y float64) []*plotter.Point {
list := make([]*plotter.Point, 0, anzindis)
for i := 0; i < int(anzindis); i++ {
indi := new(plotter.Point)
indi.X = (rand.NormFloat64() * stddev) + center_x
indi.Y = (rand.NormFloat64() * stddev) + center_y
list = append(list, indi)
}
return list
}