本文整理匯總了Golang中math.Sqrt函數的典型用法代碼示例。如果您正苦於以下問題:Golang Sqrt函數的具體用法?Golang Sqrt怎麽用?Golang Sqrt使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Sqrt函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: pack
/*
Copy x to y using packed storage.
The vector x is an element of S, with the 's' components stored in
unpacked storage. On return, x is copied to y with the 's' components
stored in packed storage and the off-diagonal entries scaled by
sqrt(2).
*/
func pack(x, y *matrix.FloatMatrix, dims *DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
iu, ip := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)},
&la_.IOpt{"offsety", ip})
y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0)))
ip += n - k
}
iu += n * n
}
np := dims.SumPacked("s")
blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq})
return
}
示例2: computeErrorModel
// Computes the error estimate based on fNew:
func (p *peer) computeErrorModel(in *integration) (errorEstimate float64) {
var i_n, j_stg uint
// Loop: EmFactors
for i_n = 0; i_n < in.n; i_n++ {
var factor float64 = 0.0
for j_stg = 0; j_stg < p.Stages; j_stg++ {
factor += p.errorModelWeights[j_stg] * in.fNew[j_stg][i_n]
}
in.errorFactors[i_n] = math.Pow(factor/(in.AbsoluteTolerance+in.RelativeTolerance*math.Abs(in.yOld[p.Stages-1][i_n])), 2.0)
}
// compute error quotient/20070803
// step ratio from error model ((1+a)^p-a^p)/est+a^p)^(1/p)-a, p=order/2:
errorRelative := 0.0
for i_n = 0; i_n < in.n; i_n++ {
errorRelative += in.errorFactors[i_n]
}
errorEstimate = in.stepEstimate*math.Sqrt(errorRelative/float64(in.n)) + 1e-8
errorModelDenom := math.Pow(math.Pow(in.stepRatio, 2.0)+p.errorModelA, float64(p.Order)/2.0) - p.errorModelA0
errorStepRatio := math.Pow(errorModelDenom/errorEstimate+p.errorModelA0, 2.0/float64(p.Order)) - p.errorModelA
in.stepEstimate = in.stepPrevious * math.Max(in.stepRatioMin, math.Min(0.95*math.Sqrt(errorStepRatio), p.stepRatioMax)) // safety interval
return
}
示例3: ToPolar
// Convert the given coordinate from X,Y to polar in the given PolarSystem
func (coord Coordinate) ToPolar(system PolarSystem) (polarCoord PolarCoordinate) {
coord.X += system.XOffset
coord.Y += system.YOffset
// clip coordinates to system's area
if coord.X < system.XMin {
fmt.Println("WARNING: X value was outside left bounds, clipping", coord.X, "to", system.XMin)
coord.X = system.XMin
}
if coord.X > system.XMax {
fmt.Println("WARNING: X value was outside right bounds, clipping", coord.X, "to", system.XMax)
coord.X = system.XMax
}
if coord.Y < system.YMin {
fmt.Println("WARNING: Y value was outside top bounds, clipping", coord.Y, "to", system.YMin)
coord.Y = system.YMin
}
if coord.Y > system.YMax {
fmt.Println("WARNING: Y value was outside bottom bounds, clipping", coord.Y, "to", system.YMax)
coord.Y = system.YMax
}
polarCoord.LeftDist = math.Sqrt(coord.X*coord.X + coord.Y*coord.Y)
xDiff := system.RightMotorDist - coord.X
polarCoord.RightDist = math.Sqrt(xDiff*xDiff + coord.Y*coord.Y)
polarCoord.PenUp = coord.PenUp
return
}
示例4: ellipse
func ellipse(dst *sdl.Surface, org Point, a, b int) {
colour := image.RGBAColor{0, 255, 0, 255}
// set the poles
dst.Set(int(org.X), int(org.Y)+b, colour)
dst.Set(int(org.X), int(org.Y)-b, colour)
dst.Set(int(org.X)+a, int(org.Y), colour)
dst.Set(int(org.X)-a, int(org.Y), colour)
// add a bias to a and b for smoother poles
ba := float64(a) + 0.5
bb := float64(b) + 0.5
// draw and rotate a quadrant
for x := 1; x < a; x++ {
y1 := (-bb * float64(x)) / (ba * math.Sqrt(ba*ba-float64(x*x)))
y := int(math.Sqrt((bb * bb) * (1.0 - float64(x*x)/(ba*ba))))
if y1 > -1.0 {
dst.Set(int(org.X)+x, int(org.Y)+y, colour)
dst.Set(int(org.X)-x, int(org.Y)+y, colour)
dst.Set(int(org.X)+x, int(org.Y)-y, colour)
dst.Set(int(org.X)-x, int(org.Y)-y, colour)
} else {
for dy := 1; dy <= y; dy++ {
dx := int(math.Sqrt((ba * ba) * (1.0 - float64(dy*dy)/(bb*bb))))
dst.Set(int(org.X)+dx, int(org.Y)+dy, colour)
dst.Set(int(org.X)-dx, int(org.Y)+dy, colour)
dst.Set(int(org.X)+dx, int(org.Y)-dy, colour)
dst.Set(int(org.X)-dx, int(org.Y)-dy, colour)
}
break
}
}
}
示例5: ComputeGivens
/*
* Compute Givens rotation such that
*
* G(s,c)*v = (r) == ( c s ).T ( a ) = ( r )
* (0) ( -s c ) ( b ) ( 0 )
*
* and
*
* v*G(s,c) = (r 0 ) == (a b ) ( c s ) = ( r 0 )
* ( -s c )
*
*/
func ComputeGivens(a, b float64) (c float64, s float64, r float64) {
if b == 0.0 {
c = 1.0
s = 0.0
r = a
} else if a == 0.0 {
c = 0.0
s = 1.0
r = b
} else if math.Abs(b) > math.Abs(a) {
t := a / b
u := math.Sqrt(1.0 + t*t)
if math.Signbit(b) {
u = -u
}
s = 1.0 / u
c = s * t
r = b * u
} else {
t := b / a
u := math.Sqrt(1.0 + t*t)
r = a * u
c = 1.0 / u
s = c * t
}
return
}
示例6: Correlation
// Correlation describes the degree of relationship between two sets of data
func Correlation(data1, data2 Float64Data) (float64, error) {
l1 := data1.Len()
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return 0, errors.New("Input data must not be empty")
}
if l1 != l2 {
return 0, errors.New("Input data must be same length")
}
var sum_xsq, sum_ysq, sum_cross float64
mean_x := data1.Get(0)
mean_y := data2.Get(0)
for i := 1; i < l1; i++ {
ratio := float64(i) / float64(i+1)
delta_x := data1.Get(i) - mean_x
delta_y := data2.Get(i) - mean_y
sum_xsq += delta_x * delta_x * ratio
sum_ysq += delta_y * delta_y * ratio
sum_cross += delta_x * delta_y * ratio
mean_x += delta_x / float64(i+1)
mean_y += delta_y / float64(i+1)
}
return sum_cross / (math.Sqrt(sum_xsq) * math.Sqrt(sum_ysq)), nil
}
示例7: renderPixel
func renderPixel(x int, y int, cx Vec, cy Vec) {
var r1, r2 float64
var dx, dy float64
var radiance Vec
var direction Vec
for sy, i := 0, (h-y-1)*w+x; sy < 2; sy++ {
for sx := 0; sx < 2; sx++ {
radiance.x = 0
radiance.y = 0
radiance.z = 0
for s := 0; s < samps; s++ {
r1, r2 = 2*rand.Float64(), 2*rand.Float64()
if r1 < 1 {
dx = math.Sqrt(r1) - 1
} else {
dx = 1 - math.Sqrt(2-r1)
}
if r2 < 1 {
dy = math.Sqrt(r2) - 1
} else {
dy = 1 - math.Sqrt(2-r2)
}
direction = Add(Add(SMul(cx, ((float64(sx)*.5+dx)/2+float64(x))/float64(w)-.5),
SMul(cy, ((float64(sy)+.5+dy)/2+float64(y))/float64(h)-.5)), cam.Direction)
radiance = Add(radiance, SMul(Radiance(&Ray{Add(cam.Origin, SMul(direction, 140.0)), Norm(direction)}, 0), 1.0/float64(samps)))
}
colors[i] = Add(colors[i], SMul(radiance, 0.25))
}
}
}
示例8: TestGenSparseVector
func TestGenSparseVector(t *testing.T) {
si1 := StringIndex{"a", "b", "c"}
v1 := []Value{1, 2, 3}
sv1 := NewGenSparseVector(si1, v1)
if sv1.Mag() != Value(math.Sqrt(1+4+9)) {
t.Fatalf("Mag wrong - have %f", sv1.Mag())
}
si2 := StringIndex{"b", "d", "a"}
v2 := []Value{1, 2, 7}
sv2 := NewGenSparseVector(si2, v2)
dot := sv1.Dot(sv2)
if dot != 7+2 {
t.Fatalf("Dot not as expected. Have %f", dot)
}
cos := sv1.Cos(sv2)
if cos != Value((7+2)/(math.Sqrt(1+4+9)*math.Sqrt(1+4+49))) {
t.Fatalf("cos wrong. Have %f", cos)
}
mean := sv1.Mean()
if mean != 2 {
t.Fatalf("Mean not as expected, have %f", mean)
}
sv1.AddConst(2)
if sv1.Mag() != 7.071068 {
t.Fatalf("Mag (2) not as expected, have %f", sv1.Mag())
}
mean = sv1.Mean()
if mean != 4 {
t.Fatalf("Mean (2) not as expected. Have %f", mean)
}
sv1.SubConst(2)
mean = sv1.Mean()
if mean != 2 {
t.Fatalf("Mean (3) not as expected. Have %f", mean)
}
vals := make([]Value, 0, 3)
sv1.Iter(func(index interface{}, value Value) {
vals = append(vals, value)
})
if !reflect.DeepEqual(vals, v1) {
t.Fatalf("iter values not as expected. Have %v", vals)
}
sv1.IterUpdate(func(index interface{}, value Value) Value {
return 3
})
if sv1.Mean() != 3 {
t.Fatalf("that didn't work")
}
}
示例9: SetAspect
// Change the aspect ratio of a rectangle.
// The mode can be "area", "width", "height", "fit", "fill" or "stretch".
// Panics if mode is empty or unrecognized.
func SetAspect(w, h, aspect float64, mode string) (float64, float64) {
switch mode {
case "area":
// aspect = width / height
// width = height * aspect
// width^2 = width * height * aspect
// height = width / aspect
// height^2 = width * height / aspect
w, h = math.Sqrt(w*h*aspect), math.Sqrt(w*h/aspect)
case "width":
// Set height from width.
h = w / aspect
case "height":
// Set width from height.
w = h * aspect
case "fit":
// Shrink one dimension.
w, h = math.Min(w, h*aspect), math.Min(h, w/aspect)
case "fill":
// Grow one dimension.
w, h = math.Max(w, h*aspect), math.Max(h, w/aspect)
case "stretch":
// Do nothing.
case "":
panic("no mode specified")
default:
panic("unknown mode: " + mode)
}
return w, h
}
示例10: testReadUniformity
func testReadUniformity(t *testing.T, n int, seed int64) {
r := New(NewSource(seed))
buf := make([]byte, n)
nRead, err := r.Read(buf)
if err != nil {
t.Errorf("Read err %v", err)
}
if nRead != n {
t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
}
// Expect a uniform distribution of byte values, which lie in [0, 255].
var (
mean = 255.0 / 2
stddev = math.Sqrt(255.0 * 255.0 / 12.0)
errorScale = stddev / math.Sqrt(float64(n))
)
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Cast bytes as floats to use the common distribution-validity checks.
samples := make([]float64, n)
for i, val := range buf {
samples[i] = float64(val)
}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
}
示例11: calculateConfidenceInterval2
func calculateConfidenceInterval2(nt, nc, mt, mc, sdt, sdc float64) confInterval2 {
var ci confInterval2
//var z = 1.96 // http://www.dummies.com/how-to/content/creating-a-confidence-interval-for-the-difference-.html
//var z = 2.58 // http://www.dummies.com/how-to/content/creating-a-confidence-interval-for-the-difference-.html
ci.t1min = mt - zScore*(sdt/math.Sqrt(nt))
ci.t0min = mc - zScore*(sdt/math.Sqrt(nc))
ci.t1max = mt + zScore*(sdt/math.Sqrt(nt))
ci.t0max = mt + zScore*(sdt/math.Sqrt(nc))
ci.overlap = false
if ci.t1max <= ci.t0max && ci.t1max >= ci.t0min {
ci.overlap = true
}
if ci.t1min <= ci.t0max && ci.t1min >= ci.t0min {
ci.overlap = true
}
// check for encirclement
if ci.t0min <= ci.t1max && ci.t0min >= ci.t1min {
ci.overlap = true
}
return ci
}
示例12: Correlation
func Correlation(data1 interface{}, stride1 int, data2 interface{}, stride2 int, n int) (r float64) {
var ratio, delta_x, delta_y, sum_xsq, sum_ysq, sum_cross, mean_x, mean_y float64
arry1 := reflect.ValueOf(data1)
arry2 := reflect.ValueOf(data2)
/*
Compute:
sum_xsq = Sum [ (x_i - mu_x)^2 ],
sum_ysq = Sum [ (y_i - mu_y)^2 ] and
sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ]
using the above relation from Welford's paper
*/
mean_x = number.Float(arry1.Index(0 * stride1))
mean_y = number.Float(arry2.Index(0 * stride2))
for i := 0; i < n; i++ {
v1 := number.Float(arry1.Index(i * stride1))
v2 := number.Float(arry2.Index(i * stride2))
ratio = float64(i) / float64(i+1)
delta_x = v1 - mean_x
delta_y = v2 - mean_y
sum_xsq += delta_x * delta_x * ratio
sum_ysq += delta_y * delta_y * ratio
sum_cross += delta_x * delta_y * ratio
mean_x += delta_x / float64(i+1)
mean_y += delta_y / float64(i+1)
}
r = sum_cross / (math.Sqrt(sum_xsq) * math.Sqrt(sum_ysq))
return
}
示例13: Randomize
// Randomize randomizes the weights and biases
// such that the sum of the weights has a mean
// of 0 and a variance of 1.
//
// This will create d.Weights and d.Biases if
// they are nil.
func (d *DenseLayer) Randomize() {
if d.Biases == nil {
d.Biases = &autofunc.LinAdd{
Var: &autofunc.Variable{
Vector: make(linalg.Vector, d.OutputCount),
},
}
}
if d.Weights == nil {
d.Weights = &autofunc.LinTran{
Rows: d.OutputCount,
Cols: d.InputCount,
Data: &autofunc.Variable{
Vector: make(linalg.Vector, d.OutputCount*d.InputCount),
},
}
}
sqrt3 := math.Sqrt(3)
for i := 0; i < d.OutputCount; i++ {
d.Biases.Var.Vector[i] = sqrt3 * ((rand.Float64() * 2) - 1)
}
weightCoeff := math.Sqrt(3.0 / float64(d.InputCount))
for i := range d.Weights.Data.Vector {
d.Weights.Data.Vector[i] = weightCoeff * ((rand.Float64() * 2) - 1)
}
}
示例14: C206
func C206() (interface{}, error) {
min := int(math.Sqrt(10203040506070809))
max := int(math.Sqrt(19293949596979899)) + 1
checks := map[int]int{
9: 1,
8: 100,
7: 10000,
6: 1000000,
5: 100000000,
4: 10000000000,
3: 1000000000000,
2: 100000000000000,
1: 10000000000000000,
}
for i := min; i < max; i++ {
pow := i * i
matched := true
for target, divisor := range checks {
if pow/divisor%10 != target {
matched = false
break
}
}
if matched {
return i * 10, nil
}
}
return nil, nil
}
示例15: TestIntegrateMid
// check that the integration function works
func TestIntegrateMid(t *testing.T) {
tests := []struct {
fn smoothFn
x1, x2 float64
Tot float64
}{
// linear
{func(x float64) float64 { return 0.5 * x }, 0.0, 1.0, 0.25},
// normal distribution
{func(x float64) float64 { return 1 / math.Sqrt(2*math.Pi) * math.Exp(-(x*x)/2) }, -100, 100, 1.0},
// normal distribution half
{func(x float64) float64 { return 1 / math.Sqrt(2*math.Pi) * math.Exp(-(x*x)/2) }, -100, 0, 0.5},
// normal distribution segment
{func(x float64) float64 { return 1 / math.Sqrt(2*math.Pi) * math.Exp(-(x*x)/2) }, -2, -1, .1359051219835},
// scaled gamma distribution (similar to my dissertation experiment 3)
{func(x float64) float64 {
k, theta, a := 1.5, 2.0, 1.0/600
return a / (math.Gamma(k) * math.Pow(theta, k)) * math.Sqrt(x*a) * math.Exp(-x*a/2)
}, 0, 2400, 0.73853606463},
}
for i, test := range tests {
got := integrateMid(test.fn, test.x1, test.x2, 10000)
if diff := math.Abs(got - test.Tot); diff > 1e-10 {
t.Errorf("case %v (integral from %v to %v): got %v, want %v", i+1, test.x1, test.x2, got, test.Tot)
}
}
}