本文整理匯總了Golang中math.Lgamma函數的典型用法代碼示例。如果您正苦於以下問題:Golang Lgamma函數的具體用法?Golang Lgamma怎麽用?Golang Lgamma使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Lgamma函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: Beta
/*Beta function
Special cases:
z<0: NaN
w<0: NaN
*/
func Beta(z float64, w float64) float64 {
if z < 0 || w < 0 {
return math.NaN()
}
a, _ := math.Lgamma(z)
b, _ := math.Lgamma(w)
c, _ := math.Lgamma(z + w)
return math.Exp(a + b - c)
}
示例2: lfastchoose2
func lfastchoose2(n, k float64) (float64, int) {
// mathematically the same as lfastchoose()
// less stable typically, but useful if n-k+1 < 0
// r := lgammafn_sign(n-k+1, s_choose)
r, s_choose := math.Lgamma(n - k + 1)
p, _ := math.Lgamma(n + 1)
q, _ := math.Lgamma(k + 1)
return p - q - r, s_choose
}
示例3: updateComponentE
func (sampler *Sampler) updateComponentE(targetEvent int) (lgamma float64) {
var tPositive, tNegative, tNormalize float64
for k := 0; k < numTop; k++ {
tPositive, _ = math.Lgamma(float64(sampler.Model.Eventtype_histogram[k]) + sampler.eventPrior)
tNegative, _ = math.Lgamma(float64((sampler.Model.NumESDs)-sampler.Model.Eventtype_histogram[k]) + sampler.eventPrior)
tNormalize, _ = math.Lgamma(float64(sampler.Model.NumESDs) + 2*sampler.eventPrior)
lgamma += ((tPositive + tNegative) - tNormalize)
}
return lgamma
}
示例4: updateComponentP
func (sampler *Sampler) updateComponentP(participantID, eventID int) (lgamma float64) {
// for each alternative participanttype
var pPositive, pNegative, pNormalize float64
for i := 0; i < numPar; i++ {
pPositive, _ = math.Lgamma(float64(sampler.Model.Participanttype_eventtype_histogram[i][eventID]) + sampler.participantPrior)
pNegative, _ = math.Lgamma(float64(sampler.Model.Eventtype_histogram[eventID]-sampler.Model.Participanttype_eventtype_histogram[i][eventID]) + sampler.participantPrior)
pNormalize, _ = math.Lgamma(float64(sampler.Model.Eventtype_histogram[eventID]) + 2*sampler.participantPrior)
lgamma += ((pPositive + pNegative) - pNormalize)
}
return
}
示例5: betaInc
// Calculates Ix(a, b). Borrowed from
// NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING
// ISBN (0-521-43064-Z)
func betaInc(a, b, x float64) float64 {
lgab, _ := math.Lgamma(a + b)
lga, _ := math.Lgamma(a)
lgb, _ := math.Lgamma(b)
exp := lgab - lga - lgb + a*math.Log(x) + b*math.Log(1.0-x)
bt := math.Exp(exp)
if x < (a+1.0)/(a+b+2.0) {
return bt * betaCF(a, b, x) / a
} else {
return 1.0 - bt*betaCF(b, a, 1.0-x)/b
}
}
示例6: LogGeneralizedBinomial
// LogGeneralizedBinomial returns the log of the generalized binomial coefficient.
// See GeneralizedBinomial for more information.
func LogGeneralizedBinomial(n, k float64) float64 {
if n < 0 || k < 0 {
panic(badNegInput)
}
if n < k {
panic(badSetSize)
}
a, _ := math.Lgamma(n + 1)
b, _ := math.Lgamma(k + 1)
c, _ := math.Lgamma(n - k + 1)
return a - b - c
}
示例7: main
func main() {
for true {
r := bufio.NewReader(os.Stdin)
s, err := r.ReadString('\n')
if err == os.EOF {
break
}
s = strings.TrimRight(s, "\n")
a := strings.Split(s, " ")
f := a[0]
x, err := strconv.Atof64(a[1])
switch f {
case "erf":
fmt.Println(math.Erf(x))
case "expm1":
fmt.Println(math.Expm1(x))
case "phi":
fmt.Println(phi.Phi(x))
case "NormalCDFInverse":
fmt.Println(normal_cdf_inverse.NormalCDFInverse(x))
case "Gamma":
fmt.Println(math.Gamma(x))
case "LogGamma":
r, _ := math.Lgamma(x)
fmt.Println(r)
case "LogFactorial":
fmt.Println(log_factorial.LogFactorial(int(x)))
default:
fmt.Println("Unknown function: " + f)
return
}
}
}
示例8: lgamma
// Lower incomplete gamma.
func lgamma(x, s float64, regularized bool) float64 {
if x == 0 {
return 0
}
if x < 0 || s <= 0 {
return math.NaN()
}
if x > 1.1 && x > s {
if regularized {
return 1.0 - ugamma(x, s, regularized)
}
return math.Gamma(s) - ugamma(x, s, regularized)
}
var ft float64
r := s
c := 1.0
pws := 1.0
if regularized {
logg, _ := math.Lgamma(s)
ft = s*math.Log(x) - x - logg
} else {
ft = s*math.Log(x) - x
}
ft = math.Exp(ft)
for c/pws > eps {
r++
c *= x / r
pws += c
}
return pws * ft / s
}
示例9: ugamma
// Upper incomplete gamma.
func ugamma(x, s float64, regularized bool) float64 {
if x <= 1.1 || x <= s {
if regularized {
return 1 - lgamma(x, s, regularized)
}
return math.Gamma(s) - lgamma(x, s, regularized)
}
f := 1.0 + x - s
C := f
D := 0.0
var a, b, chg float64
for i := 1; i < 10000; i++ {
a = float64(i) * (s - float64(i))
b = float64(i<<1) + 1.0 + x - s
D = b + a*D
C = b + a/C
D = 1.0 / D
chg = C * D
f *= chg
if math.Abs(chg-1) < eps {
break
}
}
if regularized {
logg, _ := math.Lgamma(s)
return math.Exp(s*math.Log(x) - x - logg - math.Log(f))
}
return math.Exp(s*math.Log(x) - x - math.Log(f))
}
示例10: Skewness
// Skewness returns the skewness of the distribution.
func (w Weibull) Skewness() float64 {
stdDev := w.StdDev()
firstGamma, firstGammaSign := math.Lgamma(1 + 3/w.K)
logFirst := firstGamma + 3*(math.Log(w.Lambda)-math.Log(stdDev))
logSecond := math.Log(3) + math.Log(w.Mean()) + 2*math.Log(stdDev) - 3*math.Log(stdDev)
logThird := 3 * (math.Log(w.Mean()) - math.Log(stdDev))
return float64(firstGammaSign)*math.Exp(logFirst) - math.Exp(logSecond) - math.Exp(logThird)
}
示例11: G
/*Normalized Gamma Function
(or Complementary Incomplete Gamma Function)
Equal to Gamma(a, x)/Gamma(a)
Evaluated by Legendre's continued fraction
Special Cases:
G(0, 0) = Infinity
G(0, positive) = 1.0
G(0, negative) = 1/(-a)
*/
func G(a float64, x float64) float64 {
if x == 0 {
if a == 0 {
return math.Inf(1)
} else if a > 0 {
return 1.0
} else if a < 0 {
return 1.0 / math.Abs(a)
}
}
//Evaluate Legendre's continued fraction
//using Lentz's algorithm
//Shift from Thomson and Barnett
//Continued fraction:
//http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/
b0 := x + 1.0 - a
C := 1.0 / (10E-30)
D := 1.0 / b0
if b0 == 0 {
D = 10E30
}
f := D
//numerator
an := func(n int) float64 {
if n == 0 {
return 1.0
}
return -1.0 * float64(n) * (float64(n) - a)
}
//denominator
bn := func(n int) float64 {
return x + (float64(2*n + 1)) - a
}
//Lentz's algorithm until machine precision or 1,000 iterations
for j := 1; j < 1000; j++ {
D = bn(j) + an(j)*D
if math.Abs(D) < 10E-20 {
D = 10E-30
}
C = bn(j) + an(j)/C
if math.Abs(C) < 10E-20 {
C = 10E-30
}
D = 1.0 / D
del := D * C
f *= del
if math.Abs(del-1.0) < 10E-15 {
break
}
}
lnGa, _ := math.Lgamma(a)
return f * math.Exp(-x+a*math.Log(x)-lnGa)
}
示例12: documentLikelihood
// compute document likelihood of the events in the current esd
// all participant labelings will stay constant -> no need to compute them!
func (sampler *Sampler) documentLikelihood(label Label) float64 {
var wordTypeFactor, wordFactor, wordNorm float64
var typeWordTotal int
documentLikelihood := 0.0
// iterate over eventtypes
for k := 0; k < numTop; k++ {
wordFactor = 0.0
typeWordTotal = 0
// iterate over terms in event-vocab
for term, histogram := range sampler.Model.Word_eventtype_histogram {
typeWordTotal += histogram[k]
// compute LGamma(N(word,event) + prior + udpate)
wordTypeFactor, _ = math.Lgamma(float64(histogram[k]) + sampler.EventlmPriors[k][term])
wordFactor += wordTypeFactor
}
// normalize LGamma(N(words_by_event) + V*prior + total_update)
wordNorm, _ = math.Lgamma(float64(typeWordTotal) + sum(sampler.EventlmPriors[k]))
documentLikelihood += (wordFactor - wordNorm)
}
return documentLikelihood
}
示例13: documentLikelihoodP
// compute document likelihood of the participant realization in question, given the proposed label
// all event doc likelihoods will stay constant w.r.t. change -> no need to compute them!
func (sampler *Sampler) documentLikelihoodP(event int, participant int, label Label) float64 {
var wordTypeFactor, wordFactor, wordNorm float64
var typeWordTotal /*, update*/ int
documentLikelihood := 0.0
// iterate over participanttypes
for i := 0; i < numPar; i++ {
wordFactor = 0.0
typeWordTotal = 0
// iterate over terms in participant vocab
for term, histogram := range sampler.Model.Word_participanttype_histogram {
typeWordTotal += histogram[i]
// set 'update' according to the number of times term is present in current particip descr
// compute LGamma(N(word,part) + prior + update)
wordTypeFactor, _ = math.Lgamma(float64(histogram[i]) + sampler.ParticipantlmPriors[i][term])
wordFactor += wordTypeFactor
}
// normalize
wordNorm, _ = math.Lgamma(float64(typeWordTotal) + sum(sampler.ParticipantlmPriors[i]))
documentLikelihood += (wordFactor - wordNorm)
}
return documentLikelihood
}
示例14: PDF
//Gamma Distribution PDF
func (g *Gamma) PDF(x float64) float64 {
if x <= 0 {
return math.NaN()
}
if math.IsInf(x, 1) {
return 1.0
} else if math.IsInf(x, -1) {
return 0.0
}
lga, _ := math.Lgamma(g.alpha)
logp := (g.alpha * math.Log(g.beta)) + ((g.alpha - 1.0) * math.Log(x)) - (x * g.beta) - lga
return math.Exp(logp)
}
示例15: TestLnGamma
func TestLnGamma(t *testing.T) {
acc := 0.0000001
check := func(x, y float64) bool {
if false {
return x == y
}
return math.Abs(x-y) < acc
}
for i := 0; i < 100; i++ {
x := NextGamma(10, 10)
g1 := LnΓ(x)
g2, _ := math.Lgamma(x)
if !check(g1, g2) {
t.Error(fmt.Sprintf("For %v: %v vs %v", x, g1, g2))
}
}
//var start int64
Seed(10)
start := time.Now()
for i := 0; i < 1e6; i++ {
x := NextGamma(10, 10)
math.Lgamma(x)
}
now := time.Now()
duration2 := float64(now.Sub(start)) / 1e9
//duration2 := float64(time.Now()-start) / 1e9
Seed(10)
start = time.Now()
for i := 0; i < 1e6; i++ {
x := NextGamma(10, 10)
LnΓ(x)
}
now = time.Now()
duration1 := float64(now.Sub(start)) / 1e9
fmt.Printf("Mine was %f\nTheirs was %f\n", duration1, duration2)
}