本文整理匯總了Golang中math.Exp函數的典型用法代碼示例。如果您正苦於以下問題:Golang Exp函數的具體用法?Golang Exp怎麽用?Golang Exp使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Exp函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: TestLegendre
func TestLegendre(t *testing.T) {
for i, test := range []struct {
f func(float64) float64
min, max float64
n []int
tol []float64
ans float64
}{
// Tolerances determined from intuition and a bit of post-hoc tweaking.
{
f: func(x float64) float64 { return math.Exp(x) },
min: -3,
max: 5,
n: []int{3, 4, 6, 7, 15, 16, 300, 301},
tol: []float64{5e-2, 5e-3, 5e-6, 1e-7, 1e-14, 1e-14, 1e-14, 1e-14},
ans: math.Exp(5) - math.Exp(-3),
},
} {
for j, n := range test.n {
ans := Fixed(test.f, test.min, test.max, n, Legendre{}, 0)
if !floats.EqualWithinAbsOrRel(ans, test.ans, test.tol[j], test.tol[j]) {
t.Errorf("Mismatch. Case = %d, n = %d. Want %v, got %v", i, n, test.ans, ans)
}
ans2 := Fixed(test.f, test.min, test.max, n, Legendre{}, 3)
if !floats.EqualWithinAbsOrRel(ans2, test.ans, test.tol[j], test.tol[j]) {
t.Errorf("Mismatch concurrent. Case = %d, n = %d. Want %v, got %v", i, n, test.ans, ans)
}
}
}
}
示例2: NewActivationFunction
func NewActivationFunction(name ActivationName) ActivationFunction {
switch name {
case ActivationName_LINEAR:
return func(x mat64.Matrix, y *mat64.Dense) { y.Clone(x) }
case ActivationName_LOGISTIC:
return func(x mat64.Matrix, y *mat64.Dense) {
y.Apply(func(r, c int, v float64) float64 {
return 1 / (1 + math.Exp(-v))
}, x)
}
case ActivationName_RELU:
return func(x mat64.Matrix, y *mat64.Dense) {
y.Apply(func(r, c int, v float64) float64 { return math.Max(0, v) }, x)
}
case ActivationName_TANH:
return func(x mat64.Matrix, y *mat64.Dense) {
y.Apply(func(r, c int, v float64) float64 { return math.Tanh(v) }, x)
}
case ActivationName_SOFTMAX:
return func(x mat64.Matrix, y *mat64.Dense) {
r, c := x.Dims()
for i := 0; i < r; i++ {
exp_sum := 0.0
for j := 0; j < c; j++ {
exp_sum = exp_sum + math.Exp(x.At(i, j))
}
for j := 0; j < c; j++ {
y.Set(i, j, math.Exp(x.At(i, j))/exp_sum)
}
}
}
}
return nil
}
示例3: gradient
func gradient(x float64, y float64) (xd float64, yd float64) {
xd = (2 * x * math.Cos(math.Pow(x, 2)+math.Pow(y, 2)) * math.Cos(y+math.Exp(x))) -
(math.Exp(x) * math.Sin(math.Pow(x, 2)+math.Pow(y, 2)) * math.Sin(y+math.Exp(x)))
yd = (2 * y * math.Cos(math.Pow(x, 2)+math.Pow(y, 2)) * math.Cos(y+math.Exp(x))) -
(math.Sin(math.Pow(x, 2)+math.Pow(y, 2)) * math.Sin(y+math.Exp(x)))
return
}
示例4: TestNegativeExponential
/* Test integrating e^(-x) over infinite domains*/
func TestNegativeExponential(t *testing.T) {
const (
h = 1e-8
correct = 1
)
f := func(x float64) float64 { return math.Exp(-x) }
// Check (-Inf, 0]; should be +Inf
if msg, ok := test_integral(f, math.Inf(-1), 0, h, math.Inf(1)); !ok {
t.Error(msg)
}
// Check [0, +Inf); should be 1
if msg, ok := test_integral(f, 0, math.Inf(1), h, 1); !ok {
t.Error(msg)
}
// Now check that these results hold for -f
f = func(x float64) float64 { return -math.Exp(-x) }
// Check (-Inf, 0]; should be -Inf
if msg, ok := test_integral(f, math.Inf(-1), 0, h, math.Inf(-1)); !ok {
t.Error(msg)
}
// Check [0, +Inf); should be -1
if msg, ok := test_integral(f, 0, math.Inf(1), h, -1); !ok {
t.Error(msg)
}
}
示例5: Exp_mult_e
func Exp_mult_e(x float64, y float64, result *Result) error {
ay := math.Abs(y)
if y == 0.0 {
result.val = 0.0
result.err = 0.0
return err.SUCCESS
} else if (x < 0.5*gsl.LOG_DBL_MAX && x > 0.5*gsl.LOG_DBL_MIN) && (ay < 0.8*gsl.SQRT_DBL_MAX && ay > 1.2*gsl.SQRT_DBL_MIN) {
ex := math.Exp(x)
result.val = y * ex
result.err = (2.0 + math.Abs(x)) * gsl.DBL_EPSILON * math.Abs(result.val)
return err.SUCCESS
}
ly := math.Log(ay)
lnr := x + ly
if lnr > gsl.LOG_DBL_MAX-0.01 {
return OverflowError(result)
} else if lnr < gsl.LOG_DBL_MIN+0.01 {
return UnderflowError(result)
}
sy := gsl.Sign(y)
M := math.Floor(x)
N := math.Floor(ly)
a := x - M
b := ly - N
berr := 2.0 * gsl.DBL_EPSILON * (math.Abs(ly) + math.Abs(N))
result.val = float64(sy) * math.Exp(M+N) * math.Exp(a+b)
result.err = berr * math.Abs(result.val)
result.err += 2.0 * gsl.DBL_EPSILON * (M + N + 1.0) * math.Abs(result.val)
return err.SUCCESS
}
示例6: NormalArea_
// NormalArea calculates the area below the normal curve.
//
// den = 2^n*n!*(2*n+1)
//
// x - x(3,5,7...) / den
//
func NormalArea_(x float64) float64 {
a := x
// xx = x*x
n := 1.0
f := 1.0
sign := true
for {
f = float64(Factorial(int64(n))) * math.Pow(2, n) * (2*n + 1)
n += 2
println(n, f, a)
if sign {
a -= math.Pow(x, n) / f
sign = false
} else {
a += math.Pow(x, n) / f
sign = true
}
if n > 10 {
break
}
}
println("a", a)
println("/", math.Exp(-x*x/2.0)/k)
return a * math.Exp(-x*x/2.0) / k
}
示例7: rbmExactExpectation
func rbmExactExpectation(r *RBM, layer []bool, hidden bool) linalg.Vector {
var normalizer kahan.Summer64
var outcomeSum []kahan.Summer64
if hidden {
outcomeSum = make([]kahan.Summer64, rbmTestHiddenSize)
} else {
outcomeSum = make([]kahan.Summer64, rbmTestVisibleSize)
}
for i := 0; i < (1 << uint(len(outcomeSum))); i++ {
variableVec := boolVecFromInt(i, len(outcomeSum))
var prob float64
if hidden {
prob = math.Exp(-rbmEnergy(r, layer, variableVec))
} else {
prob = math.Exp(-rbmEnergy(r, variableVec, layer))
}
normalizer.Add(prob)
for j, b := range variableVec {
if b {
outcomeSum[j].Add(prob)
}
}
}
expectation := make(linalg.Vector, len(outcomeSum))
norm := 1.0 / normalizer.Sum()
for i, s := range outcomeSum {
expectation[i] = norm * s.Sum()
}
return expectation
}
示例8: Less
func (sh *ssHeap) Less(i, j int) bool {
ss := sh.ss
a, b := &ss.buckets[sh.h[i]], &ss.buckets[sh.h[j]]
rateA, rateB := a.rate, b.rate
lastA, lastB := a.lastTs, b.lastTs
// Formula the same as recount(), inline is faster
if lastA >= lastB {
// optimization. if rateB is already smaller than rateA, there
// is no need to compute real rates. It ain't gonna grow, and
// we can avoid running expensive math.Exp().
if rateB >= rateA {
rateB *= math.Exp(float64(lastA-lastB) * ss.weightHelper)
}
} else {
if rateA >= rateB {
rateA *= math.Exp(float64(lastB-lastA) * ss.weightHelper)
}
}
if rateA != rateB {
return rateA < rateB
} else {
// This makes difference for unitialized buckets. Rate is
// zero, but lastTs is modified. In such case make sure to use
// the unintialized bucket first.
return lastA < lastB
}
}
示例9: Boost
//Boost performs categorical adaptive boosting using the specified partition and
//returns the weight that tree that generated the partition should be given.
func (t *AdaBoostTarget) Boost(leaves *[][]int) (weight float64) {
weight = 0.0
for _, cases := range *leaves {
weight += t.Impurity(&cases, nil)
}
if weight >= .5 {
return 0.0
}
weight = .5 * math.Log((1-weight)/weight)
for _, cases := range *leaves {
m := t.Modei(&cases)
for _, c := range cases {
if t.IsMissing(c) == false {
cat := t.Geti(c)
if cat != m {
t.Weights[c] = t.Weights[c] * math.Exp(weight)
} else {
t.Weights[c] = t.Weights[c] * math.Exp(-weight)
}
}
}
}
normfactor := 0.0
for _, v := range t.Weights {
normfactor += v
}
for i, v := range t.Weights {
t.Weights[i] = v / normfactor
}
return
}
示例10: Init
// Init initialises the model
func (o *RefIncRL1) Init(prms Prms) (err error) {
// parameters
for _, p := range prms {
switch p.N {
case "lam0":
o.λ0 = p.V
case "lam1":
o.λ1 = p.V
case "alp":
o.α = p.V
case "bet":
o.β = p.V
default:
return chk.Err("ref-inc-rl1: parameter named %q is invalid", p.N)
}
}
// set b
o.b = -1.0 // not flipped
if o.λ1 < o.λ0 {
o.b = 1.0 // flipped
}
// constants
o.c1 = o.β * o.b * (o.λ1 - o.λ0)
o.c2 = math.Exp(o.β * o.b * o.α)
o.c3 = math.Exp(o.β*o.b*(1.0-o.λ0)) - o.c2*math.Exp(o.c1)
return
}
示例11: ugamma
// Upper incomplete gamma.
func ugamma(x, s float64, regularized bool) float64 {
if x <= 1.1 || x <= s {
if regularized {
return 1 - lgamma(x, s, regularized)
}
return math.Gamma(s) - lgamma(x, s, regularized)
}
f := 1.0 + x - s
C := f
D := 0.0
var a, b, chg float64
for i := 1; i < 10000; i++ {
a = float64(i) * (s - float64(i))
b = float64(i<<1) + 1.0 + x - s
D = b + a*D
C = b + a/C
D = 1.0 / D
chg = C * D
f *= chg
if math.Abs(chg-1) < eps {
break
}
}
if regularized {
logg, _ := math.Lgamma(s)
return math.Exp(s*math.Log(x) - x - logg - math.Log(f))
}
return math.Exp(s*math.Log(x) - x - math.Log(f))
}
示例12: Explore
// Evolve object within likelihood constraint
// logLstar: Likelihood constraint L > Lstar
func (Obj *Object) Explore(logLstar float64) {
step := 0.1 // Initial guess suitable step-size in (0,1)
m := 20 // MCMC counter (pre-judged # steps)
accept := 0 // # MCMC acceptances
reject := 0 // # MCMC rejections
var Try Object // Trial object
for ; m > 0; m-- {
// Trial object
Try.u = Obj.u + step*(2.*rand.Float64()-1.) // |move| < step
Try.v = Obj.v + step*(2.*rand.Float64()-1.) // |move| < step
Try.u -= math.Floor(Try.u) // wraparound to stay within (0,1)
Try.v -= math.Floor(Try.v) // wraparound to stay within (0,1)
Try.x = 4.0*Try.u - 2.0 // map to x
Try.y = 2.0 * Try.v // map to y
Try.logL = logLhood(Try.x, Try.y) // trial likelihood value
// Accept if and only if within hard likelihood constraint
if Try.logL > logLstar {
*Obj = Try
accept++
} else {
reject++
}
// Refine step-size to let acceptance ratio converge around 50%
if accept > reject {
step *= math.Exp(1.0 / float64(accept))
}
if accept < reject {
step /= math.Exp(1.0 / float64(reject))
}
}
}
示例13: Init
// Init initialises the model
func (o *RefDecSp1) Init(prms Prms) (err error) {
// parameters
e := prms.Connect(&o.β, "bet", "ref-dec-sp1 function")
e += prms.Connect(&o.λ1, "lam1", "ref-dec-sp1 function")
e += prms.Connect(&o.ya, "ya", "ref-dec-sp1 function")
e += prms.Connect(&o.yb, "yb", "ref-dec-sp1 function")
if e != "" {
err = chk.Err("%v\n", e)
return
}
// check
if o.yb >= o.ya {
return chk.Err("yb(%g) must be smaller than ya(%g)", o.yb, o.ya)
}
// constants
o.c1 = o.β * o.λ1
o.c2 = math.Exp(-o.β * o.ya)
o.c3 = math.Exp(-o.β*o.yb) - o.c2
o.c1timestmax = 400
// check
if math.IsInf(o.c2, 0) || math.IsInf(o.c3, 0) {
return chk.Err("β*ya or β*yb is too large:\n β=%v, ya=%v, yb=%v\n c1=%v, c2=%v, c3=%v", o.β, o.ya, o.yb, o.c1, o.c2, o.c3)
}
return
}
示例14: Anneal
func Anneal(state Annealable, maxTemp, minTemp float64, steps int) Annealable {
factor := -math.Log(maxTemp / minTemp)
state = state.Copy()
bestState := state.Copy()
bestEnergy := state.Energy()
previousEnergy := bestEnergy
for step := 0; step < steps; step++ {
if step%100000 == 0 {
showProgress(step, steps)
}
pct := float64(step) / float64(steps-1)
temp := maxTemp * math.Exp(factor*pct)
undo := state.DoMove()
energy := state.Energy()
change := energy - previousEnergy
if change > 0 && math.Exp(-change/temp) < rand.Float64() {
state.UndoMove(undo)
} else {
previousEnergy = energy
if energy < bestEnergy {
// pct := float64(step*100) / float64(steps)
// fmt.Printf("step: %d of %d (%.1f%%), temp: %.3f, energy: %.3f\n",
// step, steps, pct, temp, energy)
bestEnergy = energy
bestState = state.Copy()
}
}
}
showProgress(steps, steps)
return bestState
}
示例15: Init
// Init initialises the function
func (o *RefDecGen) Init(prms Prms) (err error) {
// parameters
for _, p := range prms {
switch p.N {
case "bet":
o.β = p.V
case "a":
o.a = p.V
case "b":
o.b = p.V
case "c":
o.c = p.V
case "A":
o.A = p.V
case "B":
o.B = p.V
case "xini":
o.xini = p.V
case "yini":
o.yini = p.V
default:
return chk.Err("ref-dec-gen: parameter named %q is invalid", p.N)
}
}
// constants
o.c1 = o.β * (o.b*o.A - o.a)
o.c2 = ((o.A - o.B) / (o.A - o.a/o.b)) * math.Exp(-o.β*o.c)
o.c3 = math.Exp(o.β*o.b*(o.yini+o.A*o.xini)) - o.c2*math.Exp(o.c1*o.xini)
return
}