本文整理匯總了Golang中math.Cbrt函數的典型用法代碼示例。如果您正苦於以下問題:Golang Cbrt函數的具體用法?Golang Cbrt怎麽用?Golang Cbrt使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Cbrt函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: test_cbrt
func test_cbrt(x float64, t *testing.T) {
if (math.IsNaN(math.Cbrt(x)) && !math.IsNaN(Cbrt(x))) ||
(math.IsNaN(Cbrt(x)) && !math.IsNaN(math.Cbrt(x))) ||
math.Abs(Cbrt(x)-math.Cbrt(x)) > math.Abs(math.Cbrt(x))/1e-15 {
t.Errorf("Cbrt(%v) is %v, not %v\n", x, Cbrt(x), math.Cbrt(x))
}
}
示例2: handleConn
func handleConn(conn net.Conn) {
defer conn.Close()
for {
conn.SetReadDeadline(time.Now().Add(10 * time.Second))
strReq, err := read(conn)
if err != nil {
if err == io.EOF {
fmt.Println("The connection is closed by another side. (Server)")
} else {
fmt.Printf("Read Error: %s (Server)\n", err)
}
break
}
fmt.Printf("Received request: %s (Server)\n", strReq)
i32Req, err := strconv.Atoi(strReq)
if err != nil {
n, err := write(conn, err.Error())
if err != nil {
fmt.Printf("Write Eoor (writen %d bytes:) %s (Server)\n", err)
}
fmt.Printf("Sent response (written %d bytes %s (server)\n", n, err)
continue
}
f64Resp := math.Cbrt(float64(i32Req))
respMsg := fmt.Sprintf("The cube root of %d is %f.", i32Req, f64Resp)
n, err := write(conn, respMsg)
if err != nil {
fmt.Printf("Write Error: %s (Server)\n", err)
}
fmt.Printf("Sent response (writtn %d bytes:) %s (Server)\n", n, respMsg)
}
}
示例3: AnomalyDistance
// AnomalyDistance returns true anomaly and distance for near-parabolic orbits.
//
// Distance r returned in AU.
// An error is returned if the algorithm fails to converge.
func (e *Elements) AnomalyDistance(jde float64) (ν unit.Angle, r float64, err error) {
// fairly literal translation of code on p. 246
q1 := base.K * math.Sqrt((1+e.Ecc)/e.PDis) / (2 * e.PDis) // line 20
g := (1 - e.Ecc) / (1 + e.Ecc) // line 20
t := jde - e.TimeP // line 22
if t == 0 { // line 24
return 0, e.PDis, nil
}
d1, d := 10000., 1e-9 // line 14
q2 := q1 * t // line 28
s := 2. / (3 * math.Abs(q2)) // line 30
s = 2 / math.Tan(2*math.Atan(math.Cbrt(math.Tan(math.Atan(s)/2))))
if t < 0 { // line 34
s = -s
}
if e.Ecc != 1 { // line 36
l := 0 // line 38
for {
s0 := s // line 40
z := 1.
y := s * s
g1 := -y * s
q3 := q2 + 2*g*s*y/3 // line 42
for {
z += 1 // line 44
g1 = -g1 * g * y // line 46
z1 := (z - (z+1)*g) / (2*z + 1) // line 48
f := z1 * g1 // line 50
q3 += f // line 52
if z > 50 || math.Abs(f) > d1 { // line 54
return 0, 0, errors.New("No convergence")
}
if math.Abs(f) <= d { // line 56
break
}
}
l++ // line 58
if l > 50 {
return 0, 0, errors.New("No convergence")
}
for {
s1 := s // line 60
s = (2*s*s*s/3 + q3) / (s*s + 1)
if math.Abs(s-s1) <= d { // line 62
break
}
}
if math.Abs(s-s0) <= d { // line 64
break
}
}
}
ν = unit.Angle(2 * math.Atan(s)) // line 66
r = e.PDis * (1 + e.Ecc) / (1 + e.Ecc*ν.Cos()) // line 68
if ν < 0 { // line 70
ν += 2 * math.Pi
}
return
}
示例4: BenchmarkCbrtFloat64ToUint64
func BenchmarkCbrtFloat64ToUint64(b *testing.B) {
k := uint(32)
for i := 0; i < b.N; i++ {
for j := uint64(0x10000); j < 0x4000000; j += 0x10000 {
_ = uint64(math.Cbrt(float64(j << k)))
}
}
}
示例5: AnomalyDistance
// AnomalyDistance returns true anomaly and distance of a body in a parabolic orbit of the Sun.
//
// True anomaly ν returned in radians.
// Distance r returned in AU.
func (e *Elements) AnomalyDistance(jde float64) (ν, r float64) {
W := 3 * base.K / math.Sqrt2 * (jde - e.TimeP) / e.PDis / math.Sqrt(e.PDis)
G := W * .5
Y := math.Cbrt(G + math.Sqrt(G*G+1))
s := Y - 1/Y
ν = 2 * math.Atan(s)
r = e.PDis * (1 + s*s)
return
}
示例6: Compand
func (*lstarCompander) Compand(p Point) Point {
l := p[0]
if l < 0.0 {
l = -l
}
if l <= 216.0/24389.0 {
l = l * 24389.0 / 2700.0
} else {
l = 1.16*math.Cbrt(l) - 0.16
}
if p[0] < 0.0 {
l = -l
}
p[0] = l
l = p[1]
if l < 0.0 {
l = -l
}
if l <= 216.0/24389.0 {
l = l * 24389.0 / 2700.0
} else {
l = 1.16*math.Cbrt(l) - 0.16
}
if p[1] < 0.0 {
l = -l
}
p[1] = l
l = p[2]
if l < 0.0 {
l = -l
}
if l <= 216.0/24389.0 {
l = l * 24389.0 / 2700.0
} else {
l = 1.16*math.Cbrt(l) - 0.16
}
if p[2] < 0.0 {
l = -l
}
p[2] = l
return p
}
示例7: TestIRoot16BitCbrt
// TestIRoot16BitCbrt tests IRoot() with all 16-bit numbers and 3.
func TestIRoot16BitCbrt(t *testing.T) {
for n := 0; n <= math.MaxInt16; n++ {
expectedR := int64(math.Cbrt(float64(n)))
r := IRoot(big.NewInt(int64(n)), 3)
if r.Cmp(big.NewInt(expectedR)) != 0 {
t.Errorf("For n=%d and p=3, expected r=%d, got r=%s",
&n, expectedR, r)
}
}
}
示例8: BenchmarkMatmult
func BenchmarkMatmult(b *testing.B) {
b.StopTimer()
// matmult is O(N**3) but testing expects O(b.N),
// so we need to take cube root of b.N
n := int(math.Cbrt(float64(b.N))) + 1
A := makeMatrix(n)
B := makeMatrix(n)
C := makeMatrix(n)
b.StartTimer()
matmult(nil, A, B, C, 0, n, 0, n, 0, n, 8)
}
示例9: XyzToLuvWhiteRef
func XyzToLuvWhiteRef(x, y, z float64, wref [3]float64) (l, u, v float64) {
if y/wref[1] <= 6.0/29.0*6.0/29.0*6.0/29.0 {
l = y / wref[1] * 29.0 / 3.0 * 29.0 / 3.0 * 29.0 / 3.0
} else {
l = 1.16*math.Cbrt(y/wref[1]) - 0.16
}
ubis, vbis := xyz_to_uv(x, y, z)
un, vn := xyz_to_uv(wref[0], wref[1], wref[2])
u = 13.0 * l * (ubis - un)
v = 13.0 * l * (vbis - vn)
return
}
示例10: astroid
// Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
// This solution is adapted from Geocentric::Reverse.
func astroid(x, y float64) float64 {
p, q := x*x, y*y
r := (p + q - 1) / 6
if q == 0 && r <= 0 {
return 0
}
// Avoid possible division by zero when r = 0 by multiplying equations
// for s and t by r^3 and r, resp.
S := p * q / 4 // S = r^3 * s
r2 := r * r
r3 := r * r2
// The discrimant of the quadratic equation for T3. This is zero on
// the evolute curve p^(1/3)+q^(1/3) = 1
disc := S * (S + 2*r3)
u := r
if disc >= 0 {
T3 := S + r3
// Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
// of precision due to cancellation. The result is unchanged because
// of the way the T is used in definition of u.
if T3 < 0 {
T3 += -math.Sqrt(disc)
} else {
T3 += math.Sqrt(disc) // T3 = (r * t)^3
}
// N.B. cbrt always returns the real root. cbrt(-8) = -2.
T := math.Cbrt(T3) // T = r * t
// T can be zero; but then r2 / T -> 0.
if T != 0 {
u += T + r2/T
}
} else {
// T is complex, but the way u is defined the result is real.
ang := math.Atan2(math.Sqrt(-disc), -(S + r3))
// There are three possible cube roots. We choose the root which
// avoids cancellation. Note that disc < 0 implies that r < 0.
u += 2 * r * math.Cos(ang/3)
}
v := math.Sqrt(u*u + q) // guaranteed positive
// Avoid loss of accuracy when u < 0.
var uv float64
if u < 0 {
uv = q / (v - u)
} else {
uv = u + v // u+v, guaranteed positive
}
w := (uv - q) / (2 * v) // positive?
// Rearrange expression for k to avoid loss of accuracy due to
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
return uv / (math.Sqrt(uv+w*w) + w) // guaranteed positive
}
示例11: BenchmarkCbrtFloat64ToUint
func BenchmarkCbrtFloat64ToUint(b *testing.B) {
k := uint(1)
if k<<32 != 0 {
k = 32
} else {
k = 0
}
for i := 0; i < b.N; i++ {
for j := uint(0x10000); j < 0x4000000; j += 0x10000 {
_ = uint(math.Cbrt(float64(j << k)))
}
}
}
示例12: Invert
// Invert converts an XYZ point to LAB
func (t *LabTransformer) Invert(p XYZ) Lab {
xr, yr, zr := p.X()/t.refWp.X(), p.Y()/t.refWp.Y(), p.Z()/t.refWp.Z()
var fx, fy, fz float64
if xr > CIEEps {
fx = math.Cbrt(xr)
} else {
fx = (CIEKappa*xr + 16.0) / 116.0
}
if yr > CIEEps {
fy = math.Cbrt(yr)
} else {
fy = (CIEKappa*yr + 16.0) / 116.0
}
if zr > CIEEps {
fz = math.Cbrt(zr)
} else {
fz = (CIEKappa*zr + 16.0) / 116.0
}
return Lab{116*fy - 16.0, 500.0 * (fx - fy), 200.0 * (fy - fz)}
}
示例13: Root
func Root(param float64, input *oproto.ValueStream) *oproto.ValueStream {
output := &oproto.ValueStream{}
for _, v := range input.Value {
newv := &*v
if param == 2 {
newv.DoubleValue = math.Sqrt(v.DoubleValue)
} else if param == 3 {
newv.DoubleValue = math.Cbrt(v.DoubleValue)
} else {
newv.DoubleValue = math.Pow(v.DoubleValue, 1.0/param)
}
output.Value = append(output.Value, newv)
}
return output
}
示例14: Invert
func (t *LuvTransformer) Invert(p XYZ) Luv {
d := p.X() + 15.0*p.Y() + 3.0*p.Z()
var l, up, vp float64
if d > 0 {
up = 4.0 * p.X() / d
vp = 9.0 * p.Y() / d
}
yr := p.Y() / t.refWp.Y()
if yr > CIEEps {
l = 116.0*math.Cbrt(yr) - 16.0
} else {
l = CIEKappa * yr
}
return Luv{l, 13.0 * l * (up - t.u0), 13.0 * l * (vp - t.v0)}
}
示例15: angleContribution
func angleContribution(path *geo.Path, index int, scale float64) *geo.Point {
angle := geo.NewPoint(0, 0)
if scale != 0.0 {
n1 := path.GetAt(index - 1).Clone().Subtract(path.GetAt(index))
n2 := path.GetAt(index + 1).Clone().Subtract(path.GetAt(index))
len1 := n1.DistanceFrom(geo.NewPoint(0, 0))
len2 := n2.DistanceFrom(geo.NewPoint(0, 0))
n1.Normalize()
n2.Normalize()
// cbrt
factor := math.Cbrt(n1.Dot(n2)) + 1
angle = n1.Add(n2).Normalize().Scale(math.Min(len1, len2) * scale * factor)
}
return angle
}