本文整理匯總了Golang中math.Atan2函數的典型用法代碼示例。如果您正苦於以下問題:Golang Atan2函數的具體用法?Golang Atan2怎麽用?Golang Atan2使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Atan2函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: getBoundingBox
func getBoundingBox(rf Radiusfence) (x1, x2, y1, y2 float64) {
var lat1, lat2, lon1, lon2 float64
//Convert long,lat to rad
latRad := rf.p.Latitude * DegToRad
longRad := rf.p.Longitude * DegToRad
northMost := math.Asin(math.Sin(latRad)*math.Cos(rf.r/Radius) + math.Cos(latRad)*math.Sin(rf.r/Radius)*math.Cos(North))
southMost := math.Asin(math.Sin(latRad)*math.Cos(rf.r/Radius) + math.Cos(latRad)*math.Sin(rf.r/Radius)*math.Cos(South))
eastMost := longRad + math.Atan2(math.Sin(East)*math.Sin(rf.r/Radius)*math.Cos(latRad), math.Cos(rf.r/Radius)-math.Sin(latRad)*math.Sin(latRad))
westMost := longRad + math.Atan2(math.Sin(West)*math.Sin(rf.r/Radius)*math.Cos(latRad), math.Cos(rf.r/Radius)-math.Sin(latRad)*math.Sin(latRad))
if northMost > southMost {
lat1 = southMost
lat2 = northMost
} else {
lat1 = northMost
lat2 = southMost
}
if eastMost > westMost {
lon1 = westMost
lon2 = eastMost
} else {
lon1 = eastMost
lon2 = westMost
}
return lat1, lat2, lon1, lon2
}
示例2: TestSeg
// Returns the fraction of the segment that was visible
func (l *Los) TestSeg(seg linear.Seg2) float64 {
seg.P = seg.P.Sub(l.in.Pos)
seg.Q = seg.Q.Sub(l.in.Pos)
wrap := len(l.in.Buffer.ZBuffer)
a1 := math.Atan2(seg.P.Y, seg.P.X)
a2 := math.Atan2(seg.Q.Y, seg.Q.X)
if a1 > a2 {
a1, a2 = a2, a1
seg.P, seg.Q = seg.Q, seg.P
}
if a2-a1 > math.Pi {
a1, a2 = a2, a1
seg.P, seg.Q = seg.Q, seg.P
}
start := int(((a1 / (2 * math.Pi)) + 0.5) * float64(len(l.in.Buffer.ZBuffer)))
end := int(((a2 / (2 * math.Pi)) + 0.5) * float64(len(l.in.Buffer.ZBuffer)))
count := 0.0
visible := 0.0
for i := start % wrap; i != end%wrap; i = (i + 1) % wrap {
dist2 := float32(rays[i].Isect(seg).Mag2())
if dist2 < l.in.Buffer.ZBuffer[i] {
visible += 1.0
}
count += 1.0
}
return visible / count
}
示例3: ToLatLon
// ToLatLon converts the Vector3d cartesian coordinates to
// latitude longitude according to the WGS84 datum.
// It returns a lat/lon coordinates struct.
func (v *Vector3d) ToLatLon(datum Datum) Coordinates {
aa := datum.a
bb := datum.b
e2 := (aa*aa - bb*bb) / (aa * aa) // 1st eccentricity squared
ε2 := (aa*aa - bb*bb) / (bb * bb) // 2nd eccentricity squared
p := math.Sqrt(v.x*v.x + v.y*v.y) // distance from minor axis
R := math.Sqrt(p*p + v.z*v.z) // polar radius
// parametric latitude
tanβ := (bb * v.z) / (aa * p) * (1 + ε2*b/R)
sinβ := tanβ / math.Sqrt(1+tanβ*tanβ)
cosβ := sinβ / tanβ
// geodetic latitude
φ := math.Atan2(v.z+ε2*bb*sinβ*sinβ*sinβ, p-e2*aa*cosβ*cosβ*cosβ)
// longitude
λ := math.Atan2(v.y, v.x)
coords := Coordinates{
Lat: toDegrees(φ),
Lon: toDegrees(λ),
}
return coords
}
示例4: madgwick
func (f *Filter) madgwick(timestamp int64, values []float32) {
C.madgwick_update_array(
f.orientation, C.float(sampleFreq), C.float(beta),
(*_Ctype_float)(&values[0]))
// quaternion slice
o := f.orientation
q := []float32{
float32(o.q0),
float32(o.q1),
float32(o.q2),
float32(o.q3),
}
q1 := float64(o.q0)
q2 := float64(o.q1)
q3 := float64(o.q2)
q4 := float64(o.q3)
// euler angles in radians (madgwick 2010)
z := math.Atan2(2*q2*q3-2*q1*q4, 2*q1*q1+2*q2*q2-1) * rad2deg
y := -math.Asin(2*q2*q4+2*q1*q3) * rad2deg
x := math.Atan2(2*q3*q4-2*q1*q2, 2*q1*q1+2*q4*q4-1) * rad2deg
e := []float64{z, y, x}
if false {
log.Println("qtn", timestamp, q)
log.Println("eul", timestamp, e)
}
broadcast(timestamp, "qtn", q)
}
示例5: newHalfedge
func newHalfedge(edge *Edge, LeftCell, RightCell *Cell) *Halfedge {
ret := &Halfedge{
Cell: LeftCell,
Edge: edge,
}
// 'angle' is a value to be used for properly sorting the
// halfsegments counterclockwise. By convention, we will
// use the angle of the line defined by the 'site to the left'
// to the 'site to the right'.
// However, border edges have no 'site to the right': thus we
// use the angle of line perpendicular to the halfsegment (the
// edge should have both end points defined in such case.)
if RightCell != nil {
ret.Angle = math.Atan2(RightCell.Site.Y-LeftCell.Site.Y, RightCell.Site.X-LeftCell.Site.X)
} else {
va := edge.Va
vb := edge.Vb
// rhill 2011-05-31: used to call GetStartpoint()/GetEndpoint(),
// but for performance purpose, these are expanded in place here.
if edge.LeftCell == LeftCell {
ret.Angle = math.Atan2(vb.X-va.X, va.Y-vb.Y)
} else {
ret.Angle = math.Atan2(va.X-vb.X, vb.Y-va.Y)
}
}
return ret
}
示例6: DrawSeg
func (l *Los) DrawSeg(seg linear.Seg2, source string) {
seg.P = seg.P.Sub(l.in.Pos)
seg.Q = seg.Q.Sub(l.in.Pos)
wrap := len(l.in.Buffer.ZBuffer)
a1 := math.Atan2(seg.P.Y, seg.P.X)
a2 := math.Atan2(seg.Q.Y, seg.Q.X)
if a1 > a2 {
a1, a2 = a2, a1
seg.P, seg.Q = seg.Q, seg.P
}
if a2-a1 > math.Pi {
a1, a2 = a2, a1
seg.P, seg.Q = seg.Q, seg.P
}
start := int(((a1 / (2 * math.Pi)) + 0.5) * float64(len(l.in.Buffer.ZBuffer)))
end := int(((a2 / (2 * math.Pi)) + 0.5) * float64(len(l.in.Buffer.ZBuffer)))
for i := start % wrap; i != end%wrap; i = (i + 1) % wrap {
dist2 := float32(rays[i].Isect(seg).Mag2())
// dist = rays[i].Isect(seg).Mag2()
if dist2 < l.in.Buffer.ZBuffer[i] {
l.in.Buffer.ZBuffer[i] = dist2
l.in.Buffer.SBuffer[i] = source
}
}
}
示例7: CartesianToPolar
// Convert Cartesian coordinates to polar.
// The reference ellipsoid is copied verbatim to the result.
// The resulting polar coordinates are in decimal degrees.
// Inspired by http://www.movable-type.co.uk/scripts/latlong-convert-coords.html
func CartesianToPolar(pt *CartPoint) *PolarCoord {
var gc PolarCoord
el := pt.El
esq := (el.a*el.a - el.b*el.b) / (el.a * el.a)
p := math.Hypot(pt.X, pt.Y)
lat := math.Atan2(pt.Z, p*(1-esq))
lat0 := 2.0 * math.Pi
precision := 4.0 / el.a
var v float64
for math.Abs(lat-lat0) > precision {
v = el.a / math.Sqrt(1-esq*math.Pow(math.Sin(lat), 2))
lat0 = lat
lat = math.Atan2(pt.Z+esq*v*math.Sin(lat), p)
}
gc.Height = p/math.Cos(lat) - v
gc.Latitude = radtodeg(lat)
gc.Longitude = radtodeg(math.Atan2(pt.Y, pt.X))
gc.El = el
return &gc
}
示例8: ArcCenter
// Move the arm to the point (x,y,z) following the path of an arc whose centre is at (i,j,k).
//
// The distance between the current position and (i,j,k) must equal that between (x,y,z) and (i,j,k).
func (s *Staubli) ArcCenter(x, y, z, i, j, k, direction float64) error {
// TODO rewrite this nicer. This was copypaster'd from the V+ code. It can be a lot nicer.
i += s.cur.x
j += s.cur.y
k += s.cur.z
startAngle := math.Atan2(s.cur.y-j, s.cur.x-i)
endAngle := math.Atan2(y-j, x-i)
rX := (s.cur.x - i)
rY := (s.cur.y - j)
radius := math.Sqrt(rX*rX + rY*rY)
arcLen := math.Abs((endAngle - startAngle) / direction)
zStep := (z - s.cur.z) / arcLen
for a := 0.0; a < arcLen; a++ {
angle := direction*a + startAngle
x = radius*math.Cos(angle) + i
y = radius*math.Sin(angle) + j
z = s.cur.z + a*zStep
err := s.MoveStraight(x, y, z)
if err != nil {
return err
}
}
return nil
}
示例9: Position
// Position returns observed equatorial coordinates of a planet at a given time.
//
// Argument p must be a valid V87Planet object for the observed planet.
// Argument earth must be a valid V87Planet object for Earth.
//
// Results are right ascension and declination, α and δ in radians.
func Position(p, earth *pp.V87Planet, jde float64) (α, δ float64) {
L0, B0, R0 := earth.Position(jde)
L, B, R := p.Position(jde)
sB0, cB0 := math.Sincos(B0)
sL0, cL0 := math.Sincos(L0)
sB, cB := math.Sincos(B)
sL, cL := math.Sincos(L)
x := R*cB*cL - R0*cB0*cL0
y := R*cB*sL - R0*cB0*sL0
z := R*sB - R0*sB0
{
Δ := math.Sqrt(x*x + y*y + z*z) // (33.4) p. 224
τ := base.LightTime(Δ)
// repeating with jde-τ
L, B, R = p.Position(jde - τ)
sB, cB = math.Sincos(B)
sL, cL = math.Sincos(L)
x = R*cB*cL - R0*cB0*cL0
y = R*cB*sL - R0*cB0*sL0
z = R*sB - R0*sB0
}
λ := math.Atan2(y, x) // (33.1) p. 223
β := math.Atan2(z, math.Hypot(x, y)) // (33.2) p. 223
Δλ, Δβ := apparent.EclipticAberration(λ, β, jde)
λ, β = pp.ToFK5(λ+Δλ, β+Δβ, jde)
Δψ, Δε := nutation.Nutation(jde)
λ += Δψ
sε, cε := math.Sincos(nutation.MeanObliquity(jde) + Δε)
return coord.EclToEq(λ, β, sε, cε)
// Meeus gives a formula for elongation but doesn't spell out how to
// obtaion term λ0 and doesn't give an example solution.
}
示例10: getCentroid
// compute the centroid of a polygon set
// using a spherical co-ordinate system
func getCentroid(ps geo.PointSet) *geo.Point {
X := 0.0
Y := 0.0
Z := 0.0
var toRad = math.Pi / 180
var fromRad = 180 / math.Pi
for _, point := range ps {
var lon = point[0] * toRad
var lat = point[1] * toRad
X += math.Cos(lat) * math.Cos(lon)
Y += math.Cos(lat) * math.Sin(lon)
Z += math.Sin(lat)
}
numPoints := float64(len(ps))
X = X / numPoints
Y = Y / numPoints
Z = Z / numPoints
var lon = math.Atan2(Y, X)
var hyp = math.Sqrt(X*X + Y*Y)
var lat = math.Atan2(Z, hyp)
var centroid = geo.NewPoint(lon*fromRad, lat*fromRad)
return centroid
}
示例11: calculatePitchAndRoll
func (d *MPU6050) calculatePitchAndRoll() {
accel := d.accel_reading
// fmt.Printf("accel: %f, %f, %f\n", accel.x, accel.y, accel.z)
// Accel.
p1 := math.Atan2(float64(accel.y), dist(accel.x, accel.z))
p1_deg := p1 * (180 / math.Pi)
r1 := math.Atan2(float64(accel.x), dist(accel.y, accel.z))
r1_deg := -r1 * (180 / math.Pi)
// Gyro.
p2 := float64(d.gyro_reading.x)
r2 := float64(d.gyro_reading.y) // Backwards?
// "Noise filter".
ft := float64(0.98)
sample_period := float64(1 / 2000.0)
d.pitch = float64(ft*(sample_period*p2+d.pitch) + (1-ft)*p1_deg)
d.roll = float64((ft*(sample_period*r2+d.roll) + (1-ft)*r1_deg))
d.pitch_history = append(d.pitch_history, d.pitch)
d.roll_history = append(d.roll_history, d.roll)
}
示例12: NewStdElems
func NewStdElems(r, r_dot util.Vector3D) (s StdOrbElems) {
r0 := math.Sqrt(r.Dot(r))
v02 := r_dot.Dot(r_dot)
s.A = 2/r0 - v02*EarthMuInv
s.A = 1 / s.A
h := r.Cross(r_dot)
fmt.Println(h, r, r_dot)
// fmt.Println(EarthMu, EarthMuInv)
fmt.Println(r0, math.Sqrt(v02))
c := r_dot.Cross(h).Add(r.Scale(-1 * EarthMu / r0))
fmt.Println(c, r.Scale(-1*EarthMu/r0), r_dot.Cross(h))
// fmt.Println(math.Sqrt(c.Dot(c)) / EarthMu)
s.Ecc = math.Sqrt(c.Dot(c)) / EarthMu
h_mag := math.Sqrt(h.Dot(h))
ie := c.Scale(1 / (EarthMu * s.Ecc))
ih := h.Scale(1 / h_mag)
ip := ih.Cross(ie)
s.LongAscend = math.Atan2(ih[0], -ih[1])
s.Inc = math.Acos(ih[2])
s.ArgOfPeri = math.Atan2(ie[2], ip[2])
sig0 := r.Dot(r_dot) / math.Sqrt(EarthMu)
E0 := math.Atan2(sig0/math.Sqrt(s.A), 1-r0/s.A)
s.MeanAnom0 = E0 - s.Ecc*math.Sin(E0)
return
}
示例13: boing
// bounce ball travelling in direction av off line b.
// return the new unit vector.
func boing(av realPoint, ln line) realPoint {
f := ln.p1.Sub(ln.p0)
d := math.Atan2(float64(f.Y), float64(f.X))*2 - math.Atan2(av.y, av.x)
p := realPoint{math.Cos(d), math.Sin(d)}
return p
}
示例14: IntersectP
func (c *Cone) IntersectP(r RayBase) bool {
// Transform _Ray_ to object space
ray := r.Transform(c.worldToObject)
// Compute quadratic cone coefficients
k := c.radius / c.height
k = k * k
A := ray.Dir().X*ray.Dir().X + ray.Dir().Y*ray.Dir().Y - k*ray.Dir().Z*ray.Dir().Z
B := 2.0 * (ray.Dir().X*ray.Origin().X + ray.Dir().Y*ray.Origin().Y - k*ray.Dir().Z*(ray.Origin().Z-c.height))
C := ray.Origin().X*ray.Origin().X + ray.Origin().Y*ray.Origin().Y - k*(ray.Origin().Z-c.height)*(ray.Origin().Z-c.height)
// Solve quadratic equation for _t_ values
var t0, t1 float64
var ok bool
if ok, t0, t1 = Quadratic(A, B, C); !ok {
return false
}
// Compute intersection distance along ray
if t0 > ray.Maxt() || t1 < ray.Mint() {
return false
}
thit := t0
if t0 < ray.Mint() {
thit = t1
if thit > ray.Maxt() {
return false
}
}
// Compute cone inverse mapping
phit := ray.PointAt(thit)
phi := math.Atan2(phit.Y, phit.X)
if phi < 0.0 {
phi += 2.0 * math.Pi
}
// Test cone intersection against clipping parameters
if phit.Z < 0 || phit.Z > c.height || phi > c.phiMax {
if thit == t1 {
return false
}
thit = t1
if t1 > ray.Maxt() {
return false
}
// Compute cone inverse mapping
phit = ray.PointAt(thit)
phi = math.Atan2(phit.Y, phit.X)
if phi < 0.0 {
phi += 2.0 * math.Pi
}
if phit.Z < 0 || phit.Z > c.height || phi > c.phiMax {
return false
}
}
return true
}
示例15: Angle
// Angle returns the angle between great circles defined by three points.
//
// Coordinates may be right ascensions and declinations or longitudes and
// latitudes. If r1, d1, r2, d2 defines one line and r2, d2, r3, d3 defines
// another, the result is the angle between the two lines.
//
// Algorithm by Meeus.
func Angle(r1, d1, r2, d2, r3, d3 float64) float64 {
sd2, cd2 := math.Sincos(d2)
sr21, cr21 := math.Sincos(r2 - r1)
sr32, cr32 := math.Sincos(r3 - r2)
C1 := math.Atan2(sr21, cd2*math.Tan(d1)-sd2*cr21)
C2 := math.Atan2(sr32, cd2*math.Tan(d3)-sd2*cr32)
return C1 + C2
}