本文整理匯總了Golang中math.Atan函數的典型用法代碼示例。如果您正苦於以下問題:Golang Atan函數的具體用法?Golang Atan怎麽用?Golang Atan使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Atan函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: BackAzimuth
func (p Place) BackAzimuth(point Place) float64 {
if (p.Latitude == point.Latitude) && (p.Longitude == point.Longitude) {
return 0.0
}
esq := (1.0 - 1.0/298.25) * (1.0 - 1.0/298.25)
alat3 := math.Atan(math.Tan(p.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
alat4 := math.Atan(math.Tan(point.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
rlat1 := alat3 / RadiansToDegrees
rlat2 := alat4 / RadiansToDegrees
rdlon := (point.Longitude - p.Longitude) / RadiansToDegrees
clat1 := math.Cos(rlat1)
clat2 := math.Cos(rlat2)
slat1 := math.Sin(rlat1)
slat2 := math.Sin(rlat2)
cdlon := math.Cos(rdlon)
sdlon := math.Sin(rdlon)
ybaz := -sdlon * clat1
xbaz := clat2*slat1 - slat2*clat1*cdlon
baz := RadiansToDegrees * math.Atan2(ybaz, xbaz)
if baz < 0.0 {
baz += 360.0
}
return baz
}
示例2: Initialize
func (view *ViewData) Initialize() {
twoPi := 8.0 * math.Atan(1.0)
halfCone := float64(view.FieldOfView) * float64(twoPi/360.0) / 2.0
adjustedHalfCone := math.Asin(float64(view.ScreenWidth) * math.Sin(halfCone) / float64(view.StandardScreenWidth))
var worldToScreen float64
view.HalfScreenWidth = view.ScreenWidth / 2
view.HalfScreenHeight = view.ScreenHeight / 2
// if there's a round-off error in half_cone, we want to make the cone too big (so when we clip lines to the edge of the screen they're actually off the screen, thus +1.0)
view.HalfCone = Angle(adjustedHalfCone*(float64(NumberOfAngles))/twoPi + 1.0)
// calculate world_to_screen; we could calculate this with standard_screen_width/2 and the old half_cone and get the same result
worldToScreen = float64(view.HalfScreenWidth) / math.Tan(adjustedHalfCone)
tmp0 := int16((worldToScreen / float64(view.HorizontalScale)) + 0.5)
tmp1 := int16((worldToScreen / float64(view.VerticalScale)) + 0.5)
view.WorldToScreen.X = tmp0
view.RealWorldToScreen.X = tmp0
view.WorldToScreen.Y = tmp1
view.RealWorldToScreen.Y = tmp1
// cacluate the vertical cone angle; again, overflow instead of underflow when rounding
view.HalfVerticalCone = Angle(NumberOfAngles*math.Atan((float64(view.HalfScreenHeight*view.VerticalScale)/worldToScreen))/twoPi + 1.0)
// calculate left edge vector
view.UntransformedLeftEdge.I = WorldDistance(view.WorldToScreen.X)
view.UntransformedLeftEdge.J = WorldDistance(-view.HalfScreenWidth)
// calculate right edge vector (negative, so it clips in the right direction)
view.UntransformedRightEdge.I = WorldDistance(-view.WorldToScreen.X)
view.UntransformedRightEdge.J = WorldDistance(-view.HalfScreenWidth)
// reset any effects
view.Effect = cseries.None
}
示例3: Distance
func (p Place) Distance(point Place) float64 {
if (p.Latitude == point.Latitude) && (p.Longitude == point.Longitude) {
return 0.0
}
esq := (1.0 - 1.0/298.25) * (1.0 - 1.0/298.25)
alat3 := math.Atan(math.Tan(p.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
alat4 := math.Atan(math.Tan(point.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
rlat1 := alat3 / RadiansToDegrees
rlat2 := alat4 / RadiansToDegrees
rdlon := (point.Longitude - p.Longitude) / RadiansToDegrees
clat1 := math.Cos(rlat1)
clat2 := math.Cos(rlat2)
slat1 := math.Sin(rlat1)
slat2 := math.Sin(rlat2)
cdlon := math.Cos(rdlon)
cdel := slat1*slat2 + clat1*clat2*cdlon
switch {
case cdel > 1.0:
cdel = 1.0
case cdel < -1.0:
cdel = -1.0
}
return RadiansToKm * math.Acos(cdel)
}
示例4: Azimuth
func (p Place) Azimuth(point Place) float64 {
if (p.Latitude == point.Latitude) && (p.Longitude == point.Longitude) {
return 0.0
}
esq := (1.0 - 1.0/298.25) * (1.0 - 1.0/298.25)
alat3 := math.Atan(math.Tan(p.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
alat4 := math.Atan(math.Tan(point.Latitude/RadiansToDegrees)*esq) * RadiansToDegrees
rlat1 := alat3 / RadiansToDegrees
rlat2 := alat4 / RadiansToDegrees
rdlon := (point.Longitude - p.Longitude) / RadiansToDegrees
clat1 := math.Cos(rlat1)
clat2 := math.Cos(rlat2)
slat1 := math.Sin(rlat1)
slat2 := math.Sin(rlat2)
cdlon := math.Cos(rdlon)
sdlon := math.Sin(rdlon)
yazi := sdlon * clat2
xazi := clat1*slat2 - slat1*clat2*cdlon
azi := RadiansToDegrees * math.Atan2(yazi, xazi)
if azi < 0.0 {
azi += 360.0
}
return azi
}
示例5: AnomalyDistance
// AnomalyDistance returns true anomaly and distance for near-parabolic orbits.
//
// Distance r returned in AU.
// An error is returned if the algorithm fails to converge.
func (e *Elements) AnomalyDistance(jde float64) (ν unit.Angle, r float64, err error) {
// fairly literal translation of code on p. 246
q1 := base.K * math.Sqrt((1+e.Ecc)/e.PDis) / (2 * e.PDis) // line 20
g := (1 - e.Ecc) / (1 + e.Ecc) // line 20
t := jde - e.TimeP // line 22
if t == 0 { // line 24
return 0, e.PDis, nil
}
d1, d := 10000., 1e-9 // line 14
q2 := q1 * t // line 28
s := 2. / (3 * math.Abs(q2)) // line 30
s = 2 / math.Tan(2*math.Atan(math.Cbrt(math.Tan(math.Atan(s)/2))))
if t < 0 { // line 34
s = -s
}
if e.Ecc != 1 { // line 36
l := 0 // line 38
for {
s0 := s // line 40
z := 1.
y := s * s
g1 := -y * s
q3 := q2 + 2*g*s*y/3 // line 42
for {
z += 1 // line 44
g1 = -g1 * g * y // line 46
z1 := (z - (z+1)*g) / (2*z + 1) // line 48
f := z1 * g1 // line 50
q3 += f // line 52
if z > 50 || math.Abs(f) > d1 { // line 54
return 0, 0, errors.New("No convergence")
}
if math.Abs(f) <= d { // line 56
break
}
}
l++ // line 58
if l > 50 {
return 0, 0, errors.New("No convergence")
}
for {
s1 := s // line 60
s = (2*s*s*s/3 + q3) / (s*s + 1)
if math.Abs(s-s1) <= d { // line 62
break
}
}
if math.Abs(s-s0) <= d { // line 64
break
}
}
}
ν = unit.Angle(2 * math.Atan(s)) // line 66
r = e.PDis * (1 + e.Ecc) / (1 + e.Ecc*ν.Cos()) // line 68
if ν < 0 { // line 70
ν += 2 * math.Pi
}
return
}
示例6: cartesianToGeographic
func (pt *Point) cartesianToGeographic(meridien float64, a float64, e float64, eps float64) {
x := pt.X
y := pt.Y
z := pt.Z
lon := meridien + math.Atan(y/x)
module := math.Sqrt(x*x + y*y)
phi_0 := math.Atan(z / (module * (1 - (a*e*e)/math.Sqrt(x*x+y*y+z*z))))
phi_i := math.Atan(z / module / (1 - a*e*e*math.Cos(phi_0)/(module*math.Sqrt(1-e*e*math.Sin(phi_0)*math.Sin(phi_0)))))
delta := 100.0
for delta > eps {
phi_0 = phi_i
phi_i = math.Atan(z / module / (1 - a*e*e*math.Cos(phi_0)/(module*math.Sqrt(1-e*e*math.Sin(phi_0)*math.Sin(phi_0)))))
delta = math.Abs(phi_i - phi_0)
}
he := module/math.Cos(phi_i) - a/math.Sqrt(1-e*e*math.Sin(phi_i)*math.Sin(phi_i))
pt.X = lon
pt.Y = phi_i
pt.Z = he
pt.Unit = Radian
}
示例7: Skew
func (sfc *pdfSurface) Skew(xRadians float64, yRadians float64) {
x := math.Atan(xRadians)
y := math.Atan(yRadians)
sfc.alterMatrix(1, x, y, 1, 0, 0)
}
示例8: CalculateFunction
func (self *Calc) CalculateFunction(funcName string, arg32 float32) float32 {
if len(self.errors) > 0 {
return 1
}
var result float64
arg := float64(arg32)
switch funcName {
case "sin":
result = math.Sin(self.DegToRad(arg))
case "cos":
result = math.Cos(self.DegToRad(arg))
case "tg":
result = math.Tan(self.DegToRad(arg))
case "ctg":
result = 1.0 / math.Tan(self.DegToRad(arg))
case "arcsin":
result = self.RadToDeg(math.Asin(arg))
case "arccos":
result = self.RadToDeg(math.Acos(arg))
case "arctg":
result = self.RadToDeg(math.Atan(arg))
case "arcctg":
result = self.RadToDeg(math.Atan(1 / arg))
case "sqrt":
result = math.Sqrt(arg)
default:
self.errors = append(self.errors, "Unknown identifier "+funcName)
return 1
}
return float32(result)
}
示例9: ProbContestSmall
// ProbContestSmall computes the probability for a contest between u and v where u wins if it's
// the smaller value. φ ∃ [0,1] is a scaling factor that helps v win even if it's not smaller.
// If φ==0, deterministic analysis is carried out. If φ==1, probabilistic analysis is carried out.
// As φ → 1, v "gets more help".
func ProbContestSmall(u, v, φ float64) float64 {
u = math.Atan(u)/math.Pi + 1.5
v = math.Atan(v)/math.Pi + 1.5
if u < v {
return v / (v + φ*u)
}
if u > v {
return φ * v / (φ*v + u)
}
return 0.5
}
示例10: GetEuler
// Get matrix rotation as Euler angles in degrees
func (m *Mat3) GetEuler() *V3 {
x := math.Atan((-m.matrix[5]) / m.matrix[8])
y := math.Asin(m.matrix[2])
z := math.Atan((-m.matrix[1]) / m.matrix[0])
// Convert to Degrees
x *= 180 / math.Pi
y *= 180 / math.Pi
z *= 180 / math.Pi
return NewV3(x, y, z)
}
示例11: GetEuler
// Get M rotation as Euler angles in degrees
func (m *Mat3) GetEuler() *Vec3 {
x := math.Atan((-m.M[5]) / m.M[8])
y := math.Asin(m.M[2])
z := math.Atan((-m.M[1]) / m.M[0])
// Convert to Degrees
x *= 180 / math.Pi
y *= 180 / math.Pi
z *= 180 / math.Pi
return V3(x, y, z)
}
示例12: latitudeFromLatitudeISO
func latitudeFromLatitudeISO(lat_iso float64, e float64, eps float64) float64 {
phi_0 := 2*math.Atan(math.Exp(lat_iso)) - math.Pi/2
phi_i := 2*math.Atan(math.Pow((1+e*math.Sin(phi_0))/(1-e*math.Sin(phi_0)), e/2)*math.Exp(lat_iso)) - math.Pi/2
delta := 100.0
for delta > eps {
phi_0 = phi_i
phi_i = 2*math.Atan(math.Pow((1+e*math.Sin(phi_0))/(1-e*math.Sin(phi_0)), e/2.0)*math.Exp(lat_iso)) - math.Pi/2
delta = math.Abs(phi_i - phi_0)
}
return phi_i
}
示例13: main
func main() {
fmt.Printf("sin(%9.6f deg) = %f\n", d, math.Sin(d*math.Pi/180))
fmt.Printf("sin(%9.6f rad) = %f\n", r, math.Sin(r))
fmt.Printf("cos(%9.6f deg) = %f\n", d, math.Cos(d*math.Pi/180))
fmt.Printf("cos(%9.6f rad) = %f\n", r, math.Cos(r))
fmt.Printf("tan(%9.6f deg) = %f\n", d, math.Tan(d*math.Pi/180))
fmt.Printf("tan(%9.6f rad) = %f\n", r, math.Tan(r))
fmt.Printf("asin(%f) = %9.6f deg\n", s, math.Asin(s)*180/math.Pi)
fmt.Printf("asin(%f) = %9.6f rad\n", s, math.Asin(s))
fmt.Printf("acos(%f) = %9.6f deg\n", c, math.Acos(c)*180/math.Pi)
fmt.Printf("acos(%f) = %9.6f rad\n", c, math.Acos(c))
fmt.Printf("atan(%f) = %9.6f deg\n", t, math.Atan(t)*180/math.Pi)
fmt.Printf("atan(%f) = %9.6f rad\n", t, math.Atan(t))
}
示例14: Update
/**
* Returns the yaw pitch and roll angles, respectively defined as the angles in radians between
* the Earth North and the IMU Z axis (yaw), the Earth ground plane and the IMU Y axis (pitch)
* and the Earth ground plane and the IMU X axis (roll).
*
* Returns Yaw, Pitch and Roll angles in radians
**/
func (imu *ImuMayhony) Update(when int64, gx, gy, gz, ax, ay, az, mx, my, mz float32) (yaw, pitch, roll float32) {
var (
gravx, gravy, gravz float64 // estimated gravity direction
)
imu.sampleFreq = 1.0 / (float32(when-imu.lastUpdate) / 1000000000.0) // nanoseconds to fractions of a second
imu.lastUpdate = when
ahrsUpdate(imu, gx, gy, gz, ax, ay, az, mx, my, mz)
gravx = float64(2.0 * (imu.q1*imu.q3 - imu.q0*imu.q2))
gravy = float64(2.0 * (imu.q0*imu.q1 + imu.q2*imu.q3))
gravz = float64(imu.q0*imu.q0 - imu.q1*imu.q1 - imu.q2*imu.q2 + imu.q3*imu.q3)
yaw = float32(math.Atan2(float64(2.0*imu.q1*imu.q2-2.0*imu.q0*imu.q3), float64(2.0*imu.q0*imu.q0+2.0*imu.q1*imu.q1-1.0)))
pitch = float32(math.Atan(gravx / math.Sqrt(gravy*gravy+gravz*gravz)))
roll = float32(math.Atan(gravy / math.Sqrt(gravx*gravx+gravz*gravz)))
return
}
示例15: GridToGeodetic
//GridToGeodetic converts RT90 coordinates to WGS84
func GridToGeodetic(x, y float64) (float64, float64) {
if CentralMeridian == 31337.0 {
return 0.0, 0.0
}
e2 := Flattening * (2.0 - Flattening)
n := Flattening / (2.0 - Flattening)
a_roof := Axis / (1.0 + n) * (1.0 + n*n/4.0 + n*n*n*n/64.0)
delta1 := n/2.0 - 2.0*n*n/3.0 + 37.0*n*n*n/96.0 - n*n*n*n/360.0
delta2 := n*n/48.0 + n*n*n/15.0 - 437.0*n*n*n*n/1440.0
delta3 := 17.0*n*n*n/480.0 - 37*n*n*n*n/840.0
delta4 := 4397.0 * n * n * n * n / 161280.0
Astar := e2 + e2*e2 + e2*e2*e2 + e2*e2*e2*e2
Bstar := -(7.0*e2*e2 + 17.0*e2*e2*e2 + 30.0*e2*e2*e2*e2) / 6.0
Cstar := (224.0*e2*e2*e2 + 889.0*e2*e2*e2*e2) / 120.0
Dstar := -(4279.0 * e2 * e2 * e2 * e2) / 1260.0
DegToRad := math.Pi / 180
LambdaZero := CentralMeridian * DegToRad
xi := (x - FalseNorthing) / (Scale * a_roof)
eta := (y - FalseEasting) / (Scale * a_roof)
xi_prim := xi - delta1*math.Sin(2.0*xi)*math.Cosh(2.0*eta) - delta2*math.Sin(4.0*xi)*math.Cosh(4.0*eta) - delta3*math.Sin(6.0*xi)*math.Cosh(6.0*eta) - delta4*math.Sin(8.0*xi)*math.Cosh(8.0*eta)
eta_prim := eta - delta1*math.Cos(2.0*xi)*math.Sinh(2.0*eta) - delta2*math.Cos(4.0*xi)*math.Sinh(4.0*eta) - delta3*math.Cos(6.0*xi)*math.Sinh(6.0*eta) - delta4*math.Cos(8.0*xi)*math.Sinh(8.0*eta)
phi_star := math.Asin(math.Sin(xi_prim) / math.Cosh(eta_prim))
delta_lambda := math.Atan(math.Sinh(eta_prim) / math.Cos(xi_prim))
lon_radian := LambdaZero + delta_lambda
lat_radian := phi_star + math.Sin(phi_star)*math.Cos(phi_star)*(Astar+Bstar*math.Pow(math.Sin(phi_star), 2)+Cstar*math.Pow(math.Sin(phi_star), 4)+Dstar*math.Pow(math.Sin(phi_star), 6))
return lat_radian * 180.0 / math.Pi, lon_radian * 180.0 / math.Pi
}