當前位置: 首頁>>代碼示例>>Golang>>正文


Golang math.Asin函數代碼示例

本文整理匯總了Golang中math.Asin函數的典型用法代碼示例。如果您正苦於以下問題:Golang Asin函數的具體用法?Golang Asin怎麽用?Golang Asin使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。


在下文中一共展示了Asin函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: TrueCentroid

/**
 * Returns the true centroid of the spherical triangle ABC multiplied by the
 * signed area of spherical triangle ABC. The reasons for multiplying by the
 * signed area are (1) this is the quantity that needs to be summed to compute
 * the centroid of a union or difference of triangles, and (2) it's actually
 * easier to calculate this way.
 */
func TrueCentroid(a, b, c Point) Point {
	// I couldn't find any references for computing the true centroid of a
	// spherical triangle... I have a truly marvellous demonstration of this
	// formula which this margin is too narrow to contain :)

	// assert (isUnitLength(a) && isUnitLength(b) && isUnitLength(c));
	sina := b.Cross(c.Vector).Norm()
	sinb := c.Cross(a.Vector).Norm()
	sinc := a.Cross(b.Vector).Norm()
	var ra float64 = 1
	var rb float64 = 1
	var rc float64 = 1
	if sina != 0 {
		ra = math.Asin(sina) / sina
	}
	if sinb != 0 {
		rb = math.Asin(sinb) / sinb
	}
	if sinc != 0 {
		rc = math.Asin(sinc) / sinc
	}

	// Now compute a point M such that M.X = rX * det(ABC) / 2 for X in A,B,C.
	x := PointFromCoordsRaw(a.X, b.X, c.X)
	y := PointFromCoordsRaw(a.Y, b.Y, c.Y)
	z := PointFromCoordsRaw(a.Z, b.Z, c.Z)
	r := PointFromCoordsRaw(ra, rb, rc)
	return PointFromCoordsRaw(
		0.5*y.Cross(z.Vector).Dot(r.Vector),
		0.5*z.Cross(x.Vector).Dot(r.Vector),
		0.5*x.Cross(y.Vector).Dot(r.Vector),
	)
}
開發者ID:hailocab,項目名稱:geo,代碼行數:40,代碼來源:s2.go

示例2: DistanceToEdgeWithNormal

// This is named GetDistance() in the C++ API.
func (x Point) DistanceToEdgeWithNormal(a, b, a_cross_b Point) s1.Angle {
	// There are three cases. If X is located in the spherical wedge
	// defined by A, B, and the axis A x B, then the closest point is on
	// the segment AB. Otherwise the closest point is either A or B; the
	// dividing line between these two cases is the great circle passing
	// through (A x B) and the midpoint of AB.
	if CCW(a_cross_b, a, x) && CCW(x, b, a_cross_b) {
		// The closest point to X lies on the segment AB. We compute
		// the distance to the corresponding great circle. The result
		// is accurate for small distances but not necessarily for
		// large distances (approaching Pi/2).
		//
		// TODO: sanity check a != b
		sin_dist := math.Abs(x.Dot(a_cross_b.Vector)) / a_cross_b.Norm()
		return s1.Angle(math.Asin(math.Min(1.0, sin_dist)))
	}
	// Otherwise, the closest point is either A or B. The cheapest method is
	// just to compute the minimum of the two linear (as opposed to spherical)
	// distances and convert the result to an angle. Again, this method is
	// accurate for small but not large distances (approaching Pi).
	xa := x.Sub(a.Vector).Norm2()
	xb := x.Sub(b.Vector).Norm2()
	linear_dist2 := math.Min(xa, xb)
	return s1.Angle(2 * math.Asin(math.Min(1.0, 0.5*math.Sqrt(linear_dist2))))
}
開發者ID:calendreco,項目名稱:gos2,代碼行數:26,代碼來源:edgeutil.go

示例3: getDistanceWithCross

/**
 * A slightly more efficient version of getDistance() where the cross product
 * of the two endpoints has been precomputed. The cross product does not need
 * to be normalized, but should be computed using S2.robustCrossProd() for the
 * most accurate results.
 */
func getDistanceWithCross(x, a, b, aCrossB Point) s1.Angle {
	if !x.IsUnit() || !a.IsUnit() || !b.IsUnit() {
		panic("x, a and b need to be unit length")
	}

	// There are three cases. If X is located in the spherical wedge defined by
	// A, B, and the axis A x B, then the closest point is on the segment AB.
	// Otherwise the closest point is either A or B; the dividing line between
	// these two cases is the great circle passing through (A x B) and the
	// midpoint of AB.

	if simpleCCW(aCrossB, a, x) && simpleCCW(x, b, aCrossB) {
		// The closest point to X lies on the segment AB. We compute the distance
		// to the corresponding great circle. The result is accurate for small
		// distances but not necessarily for large distances (approaching Pi/2).

		sinDist := math.Abs(x.Dot(aCrossB.Vector)) / aCrossB.Norm()
		return s1.Angle(math.Asin(math.Min(1.0, sinDist)))
	}

	// Otherwise, the closest point is either A or B. The cheapest method is
	// just to compute the minimum of the two linear (as opposed to spherical)
	// distances and convert the result to an angle. Again, this method is
	// accurate for small but not large distances (approaching Pi).

	linearDist2 := math.Min(x.Sub(a.Vector).Norm2(), x.Sub(b.Vector).Norm2())
	return s1.Angle(2 * math.Asin(math.Min(1.0, 0.5*math.Sqrt(linearDist2))))
}
開發者ID:hailocab,項目名稱:geo,代碼行數:34,代碼來源:edgeutil.go

示例4: getBoundingBox

func getBoundingBox(rf Radiusfence) (x1, x2, y1, y2 float64) {
	var lat1, lat2, lon1, lon2 float64

	//Convert long,lat to rad
	latRad := rf.p.Latitude * DegToRad
	longRad := rf.p.Longitude * DegToRad

	northMost := math.Asin(math.Sin(latRad)*math.Cos(rf.r/Radius) + math.Cos(latRad)*math.Sin(rf.r/Radius)*math.Cos(North))
	southMost := math.Asin(math.Sin(latRad)*math.Cos(rf.r/Radius) + math.Cos(latRad)*math.Sin(rf.r/Radius)*math.Cos(South))
	eastMost := longRad + math.Atan2(math.Sin(East)*math.Sin(rf.r/Radius)*math.Cos(latRad), math.Cos(rf.r/Radius)-math.Sin(latRad)*math.Sin(latRad))
	westMost := longRad + math.Atan2(math.Sin(West)*math.Sin(rf.r/Radius)*math.Cos(latRad), math.Cos(rf.r/Radius)-math.Sin(latRad)*math.Sin(latRad))

	if northMost > southMost {
		lat1 = southMost
		lat2 = northMost
	} else {
		lat1 = northMost
		lat2 = southMost
	}

	if eastMost > westMost {
		lon1 = westMost
		lon2 = eastMost
	} else {
		lon1 = eastMost
		lon2 = westMost
	}

	return lat1, lat2, lon1, lon2
}
開發者ID:GeertJohan,項目名稱:go.geofence,代碼行數:30,代碼來源:radiusfence.go

示例5: Grena3

// Grena3 calculates topocentric solar position following algorithm number 3
// described in Grena, 'Five new algorithms for the computation of sun position
// from 2010 to 2110', Solar Energy 86 (2012) pp. 1323-1337.
func Grena3(date time.Time,
	latitudeDegrees float64, longitudeDegrees float64,
	deltaTSeconds float64,
	pressureHPa float64, temperatureCelsius float64) (azimuthDegrees, zenithDegrees float64) {
	t := calcT(date)

	tE := t + 1.1574e-5*deltaTSeconds
	omegaAtE := 0.0172019715 * tE

	lambda := -1.388803 + 1.720279216e-2*tE + 3.3366e-2*math.Sin(omegaAtE-0.06172) +
		3.53e-4*math.Sin(2.0*omegaAtE-0.1163)

	epsilon := 4.089567e-1 - 6.19e-9*tE

	sLambda := math.Sin(lambda)
	cLambda := math.Cos(lambda)
	sEpsilon := math.Sin(epsilon)
	cEpsilon := math.Sqrt(1.0 - sEpsilon*sEpsilon)

	alpha := math.Atan2(sLambda*cEpsilon, cLambda)
	if alpha < 0 {
		alpha = alpha + 2*math.Pi
	}

	delta := math.Asin(sLambda * sEpsilon)

	h := 1.7528311 + 6.300388099*t + toRad(longitudeDegrees) - alpha
	h = math.Mod((h+math.Pi), (2*math.Pi)) - math.Pi
	if h < -math.Pi {
		h = h + 2*math.Pi
	}

	sPhi := math.Sin(toRad(latitudeDegrees))
	cPhi := math.Sqrt((1 - sPhi*sPhi))
	sDelta := math.Sin(delta)
	cDelta := math.Sqrt(1 - sDelta*sDelta)
	sH := math.Sin(h)
	cH := math.Cos(h)

	sEpsilon0 := sPhi*sDelta + cPhi*cDelta*cH
	eP := math.Asin(sEpsilon0) - 4.26e-5*math.Sqrt(1.0-sEpsilon0*sEpsilon0)
	gamma := math.Atan2(sH, cH*sPhi-sDelta*cPhi/cDelta)

	deltaRe := 0.0
	if eP > 0 && pressureHPa > 0.0 && pressureHPa < 3000.0 &&
		temperatureCelsius > -273 && temperatureCelsius < 273 {
		deltaRe = (0.08422 * (pressureHPa / 1000)) / ((273.0 + temperatureCelsius) *
			math.Tan(eP+0.003138/(eP+0.08919)))
	}

	z := math.Pi/2 - eP - deltaRe

	azimuthDegrees = convertAzimuth(gamma)
	zenithDegrees = toDeg(z)
	return
}
開發者ID:KlausBrunner,項目名稱:gosolarpos,代碼行數:59,代碼來源:grena3.go

示例6: main

func main() {
	fmt.Println("cos(pi/2):", math.Cos(math.Pi/2))
	fmt.Println("cos(0):", math.Cos(0))
	fmt.Println("sen(pi/2):", math.Sin(math.Pi/2))
	fmt.Println("sen(0):", math.Sin(0))
	fmt.Println("arccos(1):", math.Acos(1))
	fmt.Println("arccos(0):", math.Acos(0))
	fmt.Println("arcsen(1):", math.Asin(1))
	fmt.Println("arcsen(0):", math.Asin(0))
}
開發者ID:7hi4g0,項目名稱:Codes,代碼行數:10,代碼來源:cosSin.go

示例7: TestDistanceToEdge

// Given a point X and an edge AB, check that the distance from X to AB is
// "distance_radians" and the closest point on AB is "expected_closest"
func TestDistanceToEdge(t *testing.T) {
	tests := []struct {
		x                Point
		a                Point
		b                Point
		distance_radians float64
		expected_closest Point
	}{
		{pc(1, 0, 0), pc(1, 0, 0), pc(0, 1, 0), 0, pc(1, 0, 0)},
		{pc(0, 1, 0), pc(1, 0, 0), pc(0, 1, 0), 0, pc(0, 1, 0)},
		{pc(1, 3, 0), pc(1, 0, 0), pc(0, 1, 0), 0, pc(1, 3, 0)},
		{pc(0, 0, 1), pc(1, 0, 0), pc(0, 1, 0), math.Pi / 2, pc(1, 0, 0)},
		{pc(0, 0, -1), pc(1, 0, 0), pc(0, 1, 0), math.Pi / 2, pc(1, 0, 0)},
		{pc(-1, -1, 0), pc(1, 0, 0), pc(0, 1, 0), 0.75 * math.Pi, pc(0, 0, 0)},

		{pc(0, 1, 0), pc(1, 0, 0), pc(1, 1, 0), math.Pi / 4, pc(1, 1, 0)},
		{pc(0, -1, 0), pc(1, 0, 0), pc(1, 1, 0), math.Pi / 2, pc(1, 0, 0)},

		{pc(0, -1, 0), pc(1, 0, 0), pc(-1, 1, 0), math.Pi / 2, pc(1, 0, 0)},
		{pc(-1, -1, 0), pc(1, 0, 0), pc(-1, 1, 0), math.Pi / 2, pc(-1, 1, 0)},

		{pc(1, 1, 1), pc(1, 0, 0), pc(0, 1, 0), math.Asin(math.Sqrt(1. / 3)), pc(1, 1, 0)},
		{pc(1, 1, -1), pc(1, 0, 0), pc(0, 1, 0), math.Asin(math.Sqrt(1. / 3)), pc(1, 1, 0)},

		{pc(-1, 0, 0), pc(1, 1, 0), pc(1, 1, 0), 0.75 * math.Pi, pc(1, 1, 0)},
		{pc(0, 0, -1), pc(1, 1, 0), pc(1, 1, 0), math.Pi / 2, pc(1, 1, 0)},
		{pc(-1, 0, 0), pc(1, 0, 0), pc(1, 0, 0), math.Pi, pc(1, 0, 0)},
	}
	for _, test := range tests {
		test.x = Point{test.x.Normalize()}
		test.a = Point{test.a.Normalize()}
		test.b = Point{test.b.Normalize()}
		test.expected_closest = Point{test.expected_closest.Normalize()}

		got := test.x.DistanceToEdge(test.a, test.b).Radians()
		if math.Abs(got-test.distance_radians) > 1e-14 {
			t.Errorf("%v.DistanceToEdge(%v, %v) = %v, want %v",
				test.x, test.a, test.b, got, test.distance_radians)
		}

		closest := test.x.ClosestPoint(test.a, test.b)
		if test.expected_closest == pc(0, 0, 0) {
			if closest != test.a && closest != test.b {
				t.Errorf("NOT: %v == %v || %v == %v", closest, test.a, closest, test.b)
			}
		} else {
			if !closest.ApproxEqual(test.expected_closest) {
				t.Errorf("%v != %v", closest, test.expected_closest)
			}
		}
	}
}
開發者ID:calendreco,項目名稱:gos2,代碼行數:54,代碼來源:edgeutil_test.go

示例8: Test_Mw02

func Test_Mw02(tst *testing.T) {

	//verbose()
	chk.PrintTitle("Mw02")

	prms := []string{"φ", "Mfix"}
	vals := []float64{32, 0}
	var o NcteM
	o.Init(prms, vals)

	if SAVE_FIG {
		// rosette
		full, ref := false, true
		r := 1.1 * SQ2 * o.M(1) / 3.0
		PlotRosette(r, full, ref, true, 7)

		// NcteM
		npts := 201
		X := make([]float64, npts)
		Y := make([]float64, npts)
		W := utl.LinSpace(-1, 1, npts)
		for i, w := range W {
			θ := math.Asin(w) / 3.0
			r := SQ2 * o.M(w) / 3.0
			X[i] = -r * math.Sin(math.Pi/6.0-θ)
			Y[i] = r * math.Cos(math.Pi/6.0-θ)
			//plt.Text(X[i], Y[i], io.Sf("$\\\\theta=%.2f$", θ*180.0/math.Pi), "size=8, ha='center', color='red'")
			//plt.Text(X[i], Y[i], io.Sf("$w=%.2f$", w), "size=8, ha='center', color='red'")
		}
		plt.Plot(X, Y, "'b-'")

		// MC
		g := func(θ float64) float64 {
			return SQ2 * o.Sinφ / (SQ3*math.Cos(θ) - o.Sinφ*math.Sin(θ))
		}
		io.Pforan("M( 1) = %v\n", SQ2*o.M(1)/3.0)
		io.Pforan("g(30) = %v\n", g(math.Pi/6.0))
		for i, w := range W {
			θ := math.Asin(w) / 3.0
			r := g(θ)
			X[i] = -r * math.Sin(math.Pi/6.0-θ)
			Y[i] = r * math.Cos(math.Pi/6.0-θ)
		}
		plt.Plot(X, Y, "'k-'")

		// save
		plt.Equal()
		plt.SaveD("/tmp/gosl", "mw02.eps")
	}
}
開發者ID:PaddySchmidt,項目名稱:gosl,代碼行數:50,代碼來源:t_nonctem_test.go

示例9: main

func main() {
	fmt.Printf("sin(%9.6f deg) = %f\n", d, math.Sin(d*math.Pi/180))
	fmt.Printf("sin(%9.6f rad) = %f\n", r, math.Sin(r))
	fmt.Printf("cos(%9.6f deg) = %f\n", d, math.Cos(d*math.Pi/180))
	fmt.Printf("cos(%9.6f rad) = %f\n", r, math.Cos(r))
	fmt.Printf("tan(%9.6f deg) = %f\n", d, math.Tan(d*math.Pi/180))
	fmt.Printf("tan(%9.6f rad) = %f\n", r, math.Tan(r))
	fmt.Printf("asin(%f) = %9.6f deg\n", s, math.Asin(s)*180/math.Pi)
	fmt.Printf("asin(%f) = %9.6f rad\n", s, math.Asin(s))
	fmt.Printf("acos(%f) = %9.6f deg\n", c, math.Acos(c)*180/math.Pi)
	fmt.Printf("acos(%f) = %9.6f rad\n", c, math.Acos(c))
	fmt.Printf("atan(%f) = %9.6f deg\n", t, math.Atan(t)*180/math.Pi)
	fmt.Printf("atan(%f) = %9.6f rad\n", t, math.Atan(t))
}
開發者ID:travis1230,項目名稱:RosettaCodeData,代碼行數:14,代碼來源:trigonometric-functions.go

示例10: Dist

// Dist computes the spherical distance between two points on the unit sphere S².
func (p Geo) Dist(q Geo) float64 {
	u1 := p.c()
	v1 := q.c()
	dot := u1.dot(v1)
	if dot > 0 {
		t := u1.sub(v1)
		return 2 * math.Asin(0.5*t.abs())
	}
	if dot < 0 {
		t := u1.add(v1)
		return math.Pi - 2*math.Asin(0.5*t.abs())
	}
	return math.Pi / 2
}
開發者ID:reconditematter,項目名稱:stats2,代碼行數:15,代碼來源:geo.go

示例11: geoBoundAroundPoint

func geoBoundAroundPoint(center *Point, distance float64) *Bound {
	radDist := distance / EarthRadius
	radLat := deg2rad(center.Lat())
	radLon := deg2rad(center.Lng())
	minLat := radLat - radDist
	maxLat := radLat + radDist

	var minLon, maxLon float64
	if minLat > minLatitude && maxLat < maxLatitude {
		deltaLon := math.Asin(math.Sin(radDist) / math.Cos(radLat))
		minLon = radLon - deltaLon
		if minLon < minLongitude {
			minLon += 2 * math.Pi
		}
		maxLon = radLon + deltaLon
		if maxLon > maxLongitude {
			maxLon -= 2 * math.Pi
		}
	} else {
		minLat = math.Max(minLat, minLatitude)
		maxLat = math.Min(maxLat, maxLatitude)
		minLon = minLongitude
		maxLon = maxLongitude
	}
	return &Bound{
		sw: &Point{rad2deg(minLon), rad2deg(minLat)},
		ne: &Point{rad2deg(maxLon), rad2deg(maxLat)},
	}
}
開發者ID:j16sdiz,項目名稱:go.geo,代碼行數:29,代碼來源:bound.go

示例12: sep

// u.sep(v) returns ∠(u,v) (angular separation).
func (u vec) sep(v vec) float64 {
	u1, v1 := u.hat(), v.hat()
	dot := u1.dot(v1)
	if dot > 0 {
		t := u1.sub(v1)
		return 2 * math.Asin(0.5*t.abs())
	}
	if dot < 0 {
		t := u1.add(v1)
		return math.Pi - 2*math.Asin(0.5*t.abs())
	}
	if u1.maxabs() == 0 || v1.maxabs() == 0 {
		return 0
	}
	return math.Pi / 2
}
開發者ID:reconditematter,項目名稱:stats2,代碼行數:17,代碼來源:vec.go

示例13: ElasticInOut

// ElasticInOut Acceleration until halfway, then deceleration
func ElasticInOut(t, b, c, d float64) float64 {
	if t > d {
		return c
	}

	s := math.SqrtPi
	p := d * (0.3 * 1.5)
	a := c

	if t == 0 {
		return b
	}

	t /= d / 2

	if t == 2 {
		return b + c
	}

	if a < math.Abs(c) {
		s = p / 4
	} else {
		s = p / DoublePi * math.Asin(c/a)
	}

	t--

	if t < 0 {
		return -0.5*(a*math.Pow(2, 10*t)*math.Sin((t*d-s)*DoublePi/p)) + b
	}

	return a*math.Pow(2, -10*t)*math.Sin((t*d-s)*DoublePi/p)*0.5 + c + b
}
開發者ID:essentialkaos,項目名稱:ek,代碼行數:34,代碼來源:elastic.go

示例14: ElasticOut

// ElasticOut Decelerating to zero velocity
func ElasticOut(t, b, c, d float64) float64 {
	if t > d {
		return c
	}

	s := math.SqrtPi
	p := d * 0.3
	a := c

	if t == 0 {
		return b
	}

	t /= d

	if t == 1 {
		return b + c
	}

	if a < math.Abs(c) {
		s = p / 4
	} else {
		s = p / DoublePi * math.Asin(c/a)
	}

	return a*math.Pow(2, -10*t)*math.Sin((t*d-s)*DoublePi/p) + c + b
}
開發者ID:essentialkaos,項目名稱:ek,代碼行數:28,代碼來源:elastic.go

示例15: Paths

func (c *OutlineCone) Paths() Paths {
	center := Vector{0, 0, 0}
	hyp := center.Sub(c.Eye).Length()
	opp := c.Radius
	theta := math.Asin(opp / hyp)
	adj := opp / math.Tan(theta)
	d := math.Cos(theta) * adj
	// r := math.Sin(theta) * adj
	w := center.Sub(c.Eye).Normalize()
	u := w.Cross(c.Up).Normalize()
	c0 := c.Eye.Add(w.MulScalar(d))
	a0 := c0.Add(u.MulScalar(c.Radius * 1.01))
	b0 := c0.Add(u.MulScalar(-c.Radius * 1.01))

	var p0 Path
	for a := 0; a < 360; a++ {
		x := c.Radius * math.Cos(Radians(float64(a)))
		y := c.Radius * math.Sin(Radians(float64(a)))
		p0 = append(p0, Vector{x, y, 0})
	}
	return Paths{
		p0,
		{{a0.X, a0.Y, 0}, {0, 0, c.Height}},
		{{b0.X, b0.Y, 0}, {0, 0, c.Height}},
	}
}
開發者ID:fogleman,項目名稱:ln,代碼行數:26,代碼來源:cone.go


注:本文中的math.Asin函數示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。