本文整理匯總了Golang中math.Acos函數的典型用法代碼示例。如果您正苦於以下問題:Golang Acos函數的具體用法?Golang Acos怎麽用?Golang Acos使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Acos函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: GetAngleRad
// Get the angle in radians of the rotation this quaternion represents. Does not normalize the quaternion. Use
// {@link #getAxisAngleRad(Vector3)} to get both the axis and the angle of this rotation. Use
// {@link #getAngleAroundRad(Vector3)} to get the angle around a specific axis.
// return the angle in radians of the rotation
func (self *Quaternion) GetAngleRad() float32 {
if self.w > 1 {
return float32(2.0 * math.Acos(float64(self.w/self.Len())))
} else {
return float32(2.0 * math.Acos(float64(self.w)))
}
}
示例2: Aa
// Aa gets the rotation of quaternion q as an axis and angle.
// The axis (x, y, z) and the angle in radians is returned.
// The return elements will be zero if the length of the quaternion is 0.
// See:
// http://web.archive.org/web/20041029003853/...
// ...http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q57
func (q *Q) Aa() (ax, ay, az, angle float64) {
sinSqr := 1 - q.W*q.W
if AeqZ(sinSqr) {
return 1, 0, 0, 2 * math.Acos(q.W)
}
sin := 1 / math.Sqrt(sinSqr)
return q.X * sin, q.Y * sin, q.Z * sin, 2 * math.Acos(q.W)
}
示例3: main
func main() {
fmt.Println("cos(pi/2):", math.Cos(math.Pi/2))
fmt.Println("cos(0):", math.Cos(0))
fmt.Println("sen(pi/2):", math.Sin(math.Pi/2))
fmt.Println("sen(0):", math.Sin(0))
fmt.Println("arccos(1):", math.Acos(1))
fmt.Println("arccos(0):", math.Acos(0))
fmt.Println("arcsen(1):", math.Asin(1))
fmt.Println("arcsen(0):", math.Asin(0))
}
示例4: CircleCircleIntersectionArea
// CircleCircleIntersectionArea returns the intersection area of 2 circles.
func CircleCircleIntersectionArea(a, b Circle) float64 {
d := Dist(a.Point, b.Point)
if Sign(d) <= 0 || d+a.R <= b.R || d+b.R <= a.R {
return Sqr(math.Min(a.R, b.R)) * math.Pi
}
if d >= a.R+b.R {
return 0
}
da := (Sqr(d) + Sqr(a.R) - Sqr(b.R)) / d / 2
db := d - da
return Sqr(a.R)*math.Acos(da/a.R) - da*math.Sqrt(Sqr(a.R)-Sqr(da)) + Sqr(b.R)*math.Acos(db/b.R) - db*math.Sqrt(Sqr(b.R)-Sqr(db))
}
示例5: main
func main() {
fmt.Printf("sin(%9.6f deg) = %f\n", d, math.Sin(d*math.Pi/180))
fmt.Printf("sin(%9.6f rad) = %f\n", r, math.Sin(r))
fmt.Printf("cos(%9.6f deg) = %f\n", d, math.Cos(d*math.Pi/180))
fmt.Printf("cos(%9.6f rad) = %f\n", r, math.Cos(r))
fmt.Printf("tan(%9.6f deg) = %f\n", d, math.Tan(d*math.Pi/180))
fmt.Printf("tan(%9.6f rad) = %f\n", r, math.Tan(r))
fmt.Printf("asin(%f) = %9.6f deg\n", s, math.Asin(s)*180/math.Pi)
fmt.Printf("asin(%f) = %9.6f rad\n", s, math.Asin(s))
fmt.Printf("acos(%f) = %9.6f deg\n", c, math.Acos(c)*180/math.Pi)
fmt.Printf("acos(%f) = %9.6f rad\n", c, math.Acos(c))
fmt.Printf("atan(%f) = %9.6f deg\n", t, math.Atan(t)*180/math.Pi)
fmt.Printf("atan(%f) = %9.6f rad\n", t, math.Atan(t))
}
示例6: Distance
// Distance returns the approximate distance from another point in kilometers.
func (p Point) Distance(p2 Point) float64 {
r := 6371.01
return math.Acos((math.Sin(p.RadLat())*
math.Sin(p2.RadLat()))+
(math.Cos(p.RadLat())*math.Cos(p2.RadLat())*
math.Cos(p.RadLon()-p2.RadLon()))) * r
}
示例7: Slerp
// Spherically interpolates between this vector and the target vector by alpha which is in the range [0,1]. The result is
// stored in this vector.
// target The target vector
// alpha The interpolation coefficient.
func (self *Vector3) Slerp(target *Vector3, alpha float32) *Vector3 {
dot := self.DotV(target)
// If the inputs are too close for comfort, simply linearly interpolate.
if dot > 0.9995 || dot < -0.9995 {
return self.Lerp(target, alpha)
}
// theta0 = angle between input vectors
theta0 := float32(math.Acos(float64(dot)))
// theta = angle between this vector and result
theta := theta0 * alpha
st := float32(math.Sin(float64(theta)))
tx := target.X - self.X*dot
ty := target.Y - self.Y*dot
tz := target.Z - self.Z*dot
l2 := tx*tx + ty*ty + tz*tz
var dl float32
if l2 < 0.0001 {
dl = st * 1
} else {
dl = st * 1 / float32(math.Sqrt(float64(l2)))
}
return self.SclScalar(float32(math.Cos(float64(theta)))).Add(tx*dl, ty*dl, tz*dl).Nor()
}
示例8: Slerp
// Spherical linear interpolation.
// t is the interpolation value from 0. to 1.
// p and q are 'const'. m is *not*
func (m Quaternion) Slerp(t float64, p, q Quaternion) Quaternion {
cs := p.Dot(q)
angle := math.Acos(cs)
if math.Fabs(angle) >= internalε {
sn := math.Sin(angle)
invSn := 1. / sn
tAngle := t * angle
coeff0 := math.Sin(angle-tAngle) * invSn
coeff1 := math.Sin(tAngle) * invSn
m[0] = float64(coeff0*p[0] + coeff1*q[0])
m[1] = float64(coeff0*p[1] + coeff1*q[1])
m[2] = float64(coeff0*p[2] + coeff1*q[2])
m[3] = float64(coeff0*p[3] + coeff1*q[3])
} else {
m[0] = p[0]
m[1] = p[1]
m[2] = p[2]
m[3] = p[3]
}
return m
}
示例9: CreateSphere
func CreateSphere(o2w, w2o *Transform, ro bool, rad, z0, z1, pm float64) *Sphere {
s := new(Sphere)
s.objectToWorld = o2w
s.worldToObject = w2o
s.reverseOrientation = ro
s.transformSwapsHandedness = SwapsHandednessTransform(s.objectToWorld)
s.shapeId = GenerateShapeId()
s.radius = rad
s.Zmin = Clamp(math.Min(z0, z1), -s.radius, s.radius)
s.Zmax = Clamp(math.Max(z0, z1), -s.radius, s.radius)
s.thetaMin = math.Acos(Clamp(s.Zmin/s.radius, -1.0, 1.0))
s.thetaMax = math.Acos(Clamp(s.Zmax/s.radius, -1.0, 1.0))
s.phiMax = Radians(Clamp(pm, 0.0, 360.0))
return s
}
示例10: AstrometricJ2000
// AstrometricJ2000 is a utility function for computing astrometric coordinates.
//
// It is used internally and only exported so that it can be used from
// multiple packages. It is not otherwise expected to be used.
//
// Argument f is a function that returns J2000 equatorial rectangular
// coodinates of a body.
//
// Results are J2000 right ascention, declination, and elongation.
func AstrometricJ2000(f func(float64) (x, y, z float64), jde float64, e *pp.V87Planet) (α, δ, ψ float64) {
X, Y, Z := solarxyz.PositionJ2000(e, jde)
x, y, z := f(jde)
// (33.10) p. 229
ξ := X + x
η := Y + y
ζ := Z + z
Δ := math.Sqrt(ξ*ξ + η*η + ζ*ζ)
{
τ := base.LightTime(Δ)
x, y, z = f(jde - τ)
ξ = X + x
η = Y + y
ζ = Z + z
Δ = math.Sqrt(ξ*ξ + η*η + ζ*ζ)
}
α = math.Atan2(η, ξ)
if α < 0 {
α += 2 * math.Pi
}
δ = math.Asin(ζ / Δ)
R0 := math.Sqrt(X*X + Y*Y + Z*Z)
ψ = math.Acos((ξ*X + η*Y + ζ*Z) / R0 / Δ)
return
}
示例11: TestTofloat
func TestTofloat(t *testing.T) {
oldval := cfg.UseRadians
cfg.UseRadians = true
type test struct {
in string
out float64
}
var tests []test = []test{
{"2.5+2.5", 2.5 + 2.5},
{"2.5*2.5", 2.5 * 2.5},
{"3/2", 3. / 2.},
{"2^10", math.Pow(2, 10)},
{"sqrt(2)", math.Sqrt(2)},
{"sin(2)", math.Sin(2)},
{"cos(2)", math.Cos(2)},
{"tan(2)", math.Tan(2)},
{"arcsin(0.3)", math.Asin(0.3)},
{"arccos(0.3)", math.Acos(0.3)},
{"arctan(0.3)", math.Atan(0.3)},
{"ln(2)", math.Log(2)},
{"log(2)", math.Log10(2)},
}
for _, k := range tests {
result := TextToCas(k.in).Tofloat()
if result != k.out {
t.Errorf("Tofloat: In:%v Out:%v Result:%v",
k.in, k.out, result)
}
}
cfg.UseRadians = oldval
}
示例12: arc
func arc(t VertexConverter, x, y, rx, ry, start, angle, scale float64) (lastX, lastY float64) {
end := start + angle
clockWise := true
if angle < 0 {
clockWise = false
}
ra := (math.Abs(rx) + math.Abs(ry)) / 2
da := math.Acos(ra/(ra+0.125/scale)) * 2
//normalize
if !clockWise {
da = -da
}
angle = start + da
var curX, curY float64
for {
if (angle < end-da/4) != clockWise {
curX = x + math.Cos(end)*rx
curY = y + math.Sin(end)*ry
return curX, curY
}
curX = x + math.Cos(angle)*rx
curY = y + math.Sin(angle)*ry
angle += da
t.Vertex(curX, curY)
}
return curX, curY
}
示例13: SphericalDistance
/*
SphericalDistance calculates the distance (in meters) between two WGS84 points
*/
func SphericalDistance(lat1, lon1, lat2, lon2 float64) int {
// Convert latitude and longitude to
// spherical coordinates in radians.
degrees_to_radians := math.Pi / 180.0
// phi = 90 - latitude
phi1 := (90.0 - lat1) * degrees_to_radians
phi2 := (90.0 - lat2) * degrees_to_radians
// theta = longitude
theta1 := lon1 * degrees_to_radians
theta2 := lon2 * degrees_to_radians
/*
Compute spherical distance from spherical coordinates.
For two locations in spherical coordinates
(1, theta, phi) and (1, theta, phi)
cosine( arc length ) =
sin phi sin phi' cos(theta-theta') + cos phi cos phi'
distance = rho * arc length
*/
cos := (math.Sin(phi1)*math.Sin(phi2)*math.Cos(theta1-theta2) +
math.Cos(phi1)*math.Cos(phi2))
arc := math.Acos(cos)
// Remember to multiply arc by the radius of the earth
//in your favorite set of units to get length.
return int(6373 * 1000 * arc)
}
示例14: main
func main() {
// Triangle Rectangle
Tr := [3][2]float64{{0, 0}, {50, 0}, {50, 30}}
// Sides
a := Tr[2][0] - Tr[0][0]
b := Tr[2][0] - Tr[0][0]
c := M.Sqrt(M.Pow(a, 2) + M.Pow(b, 2))
// Reason of b over c, or
// How many times c is b?
bc := b / c
ac := a / c
// Angle in vertex Tr[0]
ß := M.Asin(bc)
println("Sin after Asin: ", M.Sin(ß), bc, M.Sin(ß) == bc)
println("Cos after Asin: ", M.Cos(ß), ac, M.Cos(ß) == bc, M.Cos(ß)-bc)
// Angle in vertex Tr[0]
ß = M.Acos(ac)
println("Sin after Acos: ", M.Sin(ß), bc, M.Sin(ß) == bc, M.Sin(ß)-bc)
println("Cos after Acos: ", M.Cos(ß), ac, M.Cos(ß) == bc)
}
示例15: xacos
func xacos() {
r := popr()
if r< -1-paminstr.Eps || r>1+paminstr.Eps {
panic("acos argument out of [-1.0, 1.0]")
}
pushr(math.Acos(r))
}