本文整理匯總了Golang中golang.org/x/tools/go/types.Type.Elem方法的典型用法代碼示例。如果您正苦於以下問題:Golang Type.Elem方法的具體用法?Golang Type.Elem怎麽用?Golang Type.Elem使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類golang.org/x/tools/go/types.Type
的用法示例。
在下文中一共展示了Type.Elem方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: MethodSet
// MethodSet returns the method set of type T. It is thread-safe.
//
// If cache is nil, this function is equivalent to types.NewMethodSet(T).
// Utility functions can thus expose an optional *MethodSetCache
// parameter to clients that care about performance.
//
func (cache *MethodSetCache) MethodSet(T types.Type) *types.MethodSet {
if cache == nil {
return types.NewMethodSet(T)
}
cache.mu.Lock()
defer cache.mu.Unlock()
switch T := T.(type) {
case *types.Named:
return cache.lookupNamed(T).value
case *types.Pointer:
if N, ok := T.Elem().(*types.Named); ok {
return cache.lookupNamed(N).pointer
}
}
// all other types
// (The map uses pointer equivalence, not type identity.)
mset := cache.others[T]
if mset == nil {
mset = types.NewMethodSet(T)
if cache.others == nil {
cache.others = make(map[types.Type]*types.MethodSet)
}
cache.others[T] = mset
}
return mset
}
示例2: needWrapType
func needWrapType(typ types.Type) bool {
switch typ := typ.(type) {
case *types.Basic:
return false
case *types.Struct:
return true
case *types.Named:
switch ut := typ.Underlying().(type) {
case *types.Basic:
return false
default:
return needWrapType(ut)
}
case *types.Array:
return true
case *types.Map:
return true
case *types.Slice:
return true
case *types.Interface:
wrap := true
if typ.Underlying() == universe.syms["error"].GoType().Underlying() {
wrap = false
}
return wrap
case *types.Signature:
return true
case *types.Pointer:
return needWrapType(typ.Elem())
}
return false
}
示例3: genWrite
func (g *goGen) genWrite(valName, seqName string, T types.Type) {
if isErrorType(T) {
g.Printf("if %s == nil {\n", valName)
g.Printf(" %s.WriteString(\"\");\n", seqName)
g.Printf("} else {\n")
g.Printf(" %s.WriteString(%s.Error());\n", seqName, valName)
g.Printf("}\n")
return
}
switch T := T.(type) {
case *types.Pointer:
// TODO(crawshaw): test *int
// TODO(crawshaw): test **Generator
switch T := T.Elem().(type) {
case *types.Named:
obj := T.Obj()
if obj.Pkg() != g.pkg {
g.errorf("type %s not defined in package %s", T, g.pkg)
return
}
g.Printf("%s.WriteGoRef(%s)\n", seqName, valName)
default:
g.errorf("unsupported type %s", T)
}
case *types.Named:
switch u := T.Underlying().(type) {
case *types.Interface, *types.Pointer:
g.Printf("%s.WriteGoRef(%s)\n", seqName, valName)
default:
g.errorf("unsupported, direct named type %s: %s", T, u)
}
default:
g.Printf("%s.Write%s(%s);\n", seqName, seqType(T), valName)
}
}
示例4: genRead
func (g *javaGen) genRead(resName, seqName string, T types.Type) {
switch T := T.(type) {
case *types.Pointer:
// TODO(crawshaw): test *int
// TODO(crawshaw): test **Generator
switch T := T.Elem().(type) {
case *types.Named:
o := T.Obj()
if o.Pkg() != g.pkg {
g.errorf("type %s not defined in package %s", T, g.pkg)
return
}
g.Printf("%s = new %s(%s.readRef());\n", resName, o.Name(), seqName)
default:
g.errorf("unsupported type %s", T)
}
case *types.Named:
switch T.Underlying().(type) {
case *types.Interface, *types.Pointer:
o := T.Obj()
if o.Pkg() != g.pkg {
g.errorf("type %s not defined in package %s", T, g.pkg)
return
}
g.Printf("%s = new %s.Proxy(%s.readRef());\n", resName, o.Name(), seqName)
default:
g.errorf("unsupported, direct named type %s", T)
}
default:
g.Printf("%s = %s.read%s();\n", resName, seqName, seqType(T))
}
}
示例5: store
// store stores value v of type T into *addr.
func store(T types.Type, addr *value, v value) {
switch T := T.Underlying().(type) {
case *types.Struct:
lhs := (*addr).(structure)
rhs := v.(structure)
for i := range lhs {
store(T.Field(i).Type(), &lhs[i], rhs[i])
}
case *types.Array:
lhs := (*addr).(array)
rhs := v.(array)
for i := range lhs {
store(T.Elem(), &lhs[i], rhs[i])
}
default:
*addr = v
}
}
示例6: sizeofElem
func sizeofElem(t types.Type) uint {
var e types.Type
switch t := t.(type) {
default:
panic(ice(fmt.Sprintf("type (%v) not an array or slice\n", t.String())))
case *types.Slice:
e = t.Elem()
case *types.Array:
e = t.Elem()
case *types.Named:
if typeinfo, ok := simdInfo(t); ok {
return typeinfo.elemSize
}
panic(ice(
fmt.Sprintf("t (%v), isSimd (%v)\n", t.String(), isSimd(t))))
}
return sizeof(e)
}
示例7: load
// load returns the value of type T in *addr.
func load(T types.Type, addr *value) value {
switch T := T.Underlying().(type) {
case *types.Struct:
v := (*addr).(structure)
a := make(structure, len(v))
for i := range a {
a[i] = load(T.Field(i).Type(), &v[i])
}
return a
case *types.Array:
v := (*addr).(array)
a := make(array, len(v))
for i := range a {
a[i] = load(T.Elem(), &v[i])
}
return a
default:
return *addr
}
}
示例8: javaType
// javaType returns a string that can be used as a Java type.
func (g *javaGen) javaType(T types.Type) string {
switch T := T.(type) {
case *types.Basic:
switch T.Kind() {
case types.Bool:
return "boolean"
case types.Int:
return "long"
case types.Int8:
return "byte"
case types.Int16:
return "short"
case types.Int32:
return "int"
case types.Int64:
return "long"
case types.Uint8:
// TODO(crawshaw): Java bytes are signed, so this is
// questionable, but vital.
return "byte"
// TODO(crawshaw): case types.Uint, types.Uint16, types.Uint32, types.Uint64:
case types.Float32:
return "float"
case types.Float64:
return "double"
case types.String:
return "String"
default:
g.errorf("unsupported return type: %s", T)
return "TODO"
}
case *types.Slice:
elem := g.javaType(T.Elem())
return elem + "[]"
case *types.Pointer:
if _, ok := T.Elem().(*types.Named); ok {
return g.javaType(T.Elem())
}
panic(fmt.Sprintf("unsupporter pointer to type: %s", T))
case *types.Named:
n := T.Obj()
if n.Pkg() != g.pkg {
panic(fmt.Sprintf("type %s is in package %s, must be defined in package %s", n.Name(), n.Pkg().Name(), g.pkg.Name()))
}
// TODO(crawshaw): more checking here
return n.Name()
default:
g.errorf("unsupported javaType: %#+v, %s\n", T, T)
return "TODO"
}
}
示例9: reflectType
func reflectType(t types.Type) reflect.Type {
switch t := t.(type) {
case *types.Tuple:
// TODO
case *types.Basic:
return reflectBasic(t.Kind())
case *types.Pointer:
return reflect.PtrTo(reflectType(t.Elem()))
case *types.Slice:
return reflect.SliceOf(reflectType(t.Elem()))
case *types.Array:
return reflect.ArrayOf(int(t.Len()), reflectType(t.Elem()))
case *types.Named:
if st, ok := simdInfo(t); ok {
return st.t
}
if sse2, ok := sse2Info(t); ok {
return sse2.t
}
}
ice(fmt.Sprintf("error unknown type:\"%v\"", t))
panic("")
}
示例10: flatten
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t. The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
fl, ok := a.flattenMemo[t]
if !ok {
switch t := t.(type) {
case *types.Named:
u := t.Underlying()
if isInterface(u) {
// Debuggability hack: don't remove
// the named type from interfaces as
// they're very verbose.
fl = append(fl, &fieldInfo{typ: t})
} else {
fl = a.flatten(u)
}
case *types.Basic,
*types.Signature,
*types.Chan,
*types.Map,
*types.Interface,
*types.Slice,
*types.Pointer:
fl = append(fl, &fieldInfo{typ: t})
case *types.Array:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for _, fi := range a.flatten(t.Elem()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
}
case *types.Struct:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for i, n := 0, t.NumFields(); i < n; i++ {
f := t.Field(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
}
}
case *types.Tuple:
// No identity node: tuples are never address-taken.
n := t.Len()
if n == 1 {
// Don't add a fieldInfo link for singletons,
// e.g. in params/results.
fl = append(fl, a.flatten(t.At(0).Type())...)
} else {
for i := 0; i < n; i++ {
f := t.At(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
}
}
}
default:
panic(t)
}
a.flattenMemo[t] = fl
}
return fl
}
示例11: objcType
func (g *objcGen) objcType(typ types.Type) string {
if isErrorType(typ) {
return "NSError*"
}
switch typ := typ.(type) {
case *types.Basic:
switch typ.Kind() {
case types.Bool:
return "BOOL"
case types.Int:
return "int"
case types.Int8:
return "int8_t"
case types.Int16:
return "int16_t"
case types.Int32:
return "int32_t"
case types.Int64:
return "int64_t"
case types.Uint8:
// byte is an alias of uint8, and the alias is lost.
return "byte"
case types.Uint16:
return "uint16_t"
case types.Uint32:
return "uint32_t"
case types.Uint64:
return "uint64_t"
case types.Float32:
return "float"
case types.Float64:
return "double"
case types.String:
return "NSString*"
default:
g.errorf("unsupported type: %s", typ)
return "TODO"
}
case *types.Slice:
elem := g.objcType(typ.Elem())
// Special case: NSData seems to be a better option for byte slice.
if elem == "byte" {
return "NSData*"
}
// TODO(hyangah): support other slice types: NSArray or CFArrayRef.
// Investigate the performance implication.
g.errorf("unsupported type: %s", typ)
return "TODO"
case *types.Pointer:
if _, ok := typ.Elem().(*types.Named); ok {
return g.objcType(typ.Elem()) + "*"
}
g.errorf("unsupported pointer to type: %s", typ)
return "TODO"
case *types.Named:
n := typ.Obj()
if n.Pkg() != g.pkg {
g.errorf("type %s is in package %s; only types defined in package %s is supported", n.Name(), n.Pkg().Name(), g.pkg.Name())
return "TODO"
}
switch typ.Underlying().(type) {
case *types.Interface:
return g.namePrefix + n.Name() + "*"
case *types.Struct:
return g.namePrefix + n.Name()
}
g.errorf("unsupported, named type %s", typ)
return "TODO"
default:
g.errorf("unsupported type: %#+v, %s", typ, typ)
return "TODO"
}
}
示例12: matchArgTypeInternal
// matchArgTypeInternal is the internal version of matchArgType. It carries a map
// remembering what types are in progress so we don't recur when faced with recursive
// types or mutually recursive types.
func (f *File) matchArgTypeInternal(t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool {
// %v, %T accept any argument type.
if t == anyType {
return true
}
if typ == nil {
// external call
typ = f.pkg.types[arg].Type
if typ == nil {
return true // probably a type check problem
}
}
// If the type implements fmt.Formatter, we have nothing to check.
// But (see issue 6259) that's not easy to verify, so instead we see
// if its method set contains a Format function. We could do better,
// even now, but we don't need to be 100% accurate. Wait for 6259 to
// be fixed instead. TODO.
if f.hasMethod(typ, "Format") {
return true
}
// If we can use a string, might arg (dynamically) implement the Stringer or Error interface?
if t&argString != 0 {
if types.AssertableTo(errorType, typ) || types.AssertableTo(stringerType, typ) {
return true
}
}
typ = typ.Underlying()
if inProgress[typ] {
// We're already looking at this type. The call that started it will take care of it.
return true
}
inProgress[typ] = true
switch typ := typ.(type) {
case *types.Signature:
return t&argPointer != 0
case *types.Map:
// Recur: map[int]int matches %d.
return t&argPointer != 0 ||
(f.matchArgTypeInternal(t, typ.Key(), arg, inProgress) && f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress))
case *types.Chan:
return t&argPointer != 0
case *types.Array:
// Same as slice.
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
return true // %s matches []byte
}
// Recur: []int matches %d.
return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem().Underlying(), arg, inProgress)
case *types.Slice:
// Same as array.
if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
return true // %s matches []byte
}
// Recur: []int matches %d. But watch out for
// type T []T
// If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below.
return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress)
case *types.Pointer:
// Ugly, but dealing with an edge case: a known pointer to an invalid type,
// probably something from a failed import.
if typ.Elem().String() == "invalid type" {
if *verbose {
f.Warnf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", f.gofmt(arg))
}
return true // special case
}
// If it's actually a pointer with %p, it prints as one.
if t == argPointer {
return true
}
// If it's pointer to struct, that's equivalent in our analysis to whether we can print the struct.
if str, ok := typ.Elem().Underlying().(*types.Struct); ok {
return f.matchStructArgType(t, str, arg, inProgress)
}
// The rest can print with %p as pointers, or as integers with %x etc.
return t&(argInt|argPointer) != 0
case *types.Struct:
return f.matchStructArgType(t, typ, arg, inProgress)
case *types.Interface:
// If the static type of the argument is empty interface, there's little we can do.
// Example:
// func f(x interface{}) { fmt.Printf("%s", x) }
// Whether x is valid for %s depends on the type of the argument to f. One day
// we will be able to do better. For now, we assume that empty interface is OK
// but non-empty interfaces, with Stringer and Error handled above, are errors.
return typ.NumMethods() == 0
case *types.Basic:
//.........這裏部分代碼省略.........
示例13: zero
// zero returns a new "zero" value of the specified type.
func zero(t types.Type) value {
switch t := t.(type) {
case *types.Basic:
if t.Kind() == types.UntypedNil {
panic("untyped nil has no zero value")
}
if t.Info()&types.IsUntyped != 0 {
// TODO(adonovan): make it an invariant that
// this is unreachable. Currently some
// constants have 'untyped' types when they
// should be defaulted by the typechecker.
t = ssa.DefaultType(t).(*types.Basic)
}
switch t.Kind() {
case types.Bool:
return false
case types.Int:
return int(0)
case types.Int8:
return int8(0)
case types.Int16:
return int16(0)
case types.Int32:
return int32(0)
case types.Int64:
return int64(0)
case types.Uint:
return uint(0)
case types.Uint8:
return uint8(0)
case types.Uint16:
return uint16(0)
case types.Uint32:
return uint32(0)
case types.Uint64:
return uint64(0)
case types.Uintptr:
return uintptr(0)
case types.Float32:
return float32(0)
case types.Float64:
return float64(0)
case types.Complex64:
return complex64(0)
case types.Complex128:
return complex128(0)
case types.String:
return ""
case types.UnsafePointer:
return unsafe.Pointer(nil)
default:
panic(fmt.Sprint("zero for unexpected type:", t))
}
case *types.Pointer:
return (*value)(nil)
case *types.Array:
a := make(array, t.Len())
for i := range a {
a[i] = zero(t.Elem())
}
return a
case *types.Named:
return zero(t.Underlying())
case *types.Interface:
return iface{} // nil type, methodset and value
case *types.Slice:
return []value(nil)
case *types.Struct:
s := make(structure, t.NumFields())
for i := range s {
s[i] = zero(t.Field(i).Type())
}
return s
case *types.Tuple:
if t.Len() == 1 {
return zero(t.At(0).Type())
}
s := make(tuple, t.Len())
for i := range s {
s[i] = zero(t.At(i).Type())
}
return s
case *types.Chan:
return chan value(nil)
case *types.Map:
if usesBuiltinMap(t.Key()) {
return map[value]value(nil)
}
return (*hashmap)(nil)
case *types.Signature:
return (*ssa.Function)(nil)
}
panic(fmt.Sprint("zero: unexpected ", t))
}
示例14: hashFor
// hashFor computes the hash of t.
func (h Hasher) hashFor(t types.Type) uint32 {
// See Identical for rationale.
switch t := t.(type) {
case *types.Basic:
return uint32(t.Kind())
case *types.Array:
return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem())
case *types.Slice:
return 9049 + 2*h.Hash(t.Elem())
case *types.Struct:
var hash uint32 = 9059
for i, n := 0, t.NumFields(); i < n; i++ {
f := t.Field(i)
if f.Anonymous() {
hash += 8861
}
hash += hashString(t.Tag(i))
hash += hashString(f.Name()) // (ignore f.Pkg)
hash += h.Hash(f.Type())
}
return hash
case *types.Pointer:
return 9067 + 2*h.Hash(t.Elem())
case *types.Signature:
var hash uint32 = 9091
if t.Variadic() {
hash *= 8863
}
return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results())
case *types.Interface:
var hash uint32 = 9103
for i, n := 0, t.NumMethods(); i < n; i++ {
// See go/types.identicalMethods for rationale.
// Method order is not significant.
// Ignore m.Pkg().
m := t.Method(i)
hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type())
}
return hash
case *types.Map:
return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem())
case *types.Chan:
return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem())
case *types.Named:
// Not safe with a copying GC; objects may move.
return uint32(reflect.ValueOf(t.Obj()).Pointer())
case *types.Tuple:
return h.hashTuple(t)
}
panic(t)
}
示例15: addRuntimeType
// addRuntimeType is called for each concrete type that can be the
// dynamic type of some interface or reflect.Value.
// Adapted from needMethods in go/ssa/builder.go
//
func (r *rta) addRuntimeType(T types.Type, skip bool) {
if prev, ok := r.result.RuntimeTypes.At(T).(bool); ok {
if skip && !prev {
r.result.RuntimeTypes.Set(T, skip)
}
return
}
r.result.RuntimeTypes.Set(T, skip)
mset := r.prog.MethodSets.MethodSet(T)
if _, ok := T.Underlying().(*types.Interface); !ok {
// T is a new concrete type.
for i, n := 0, mset.Len(); i < n; i++ {
sel := mset.At(i)
m := sel.Obj()
if m.Exported() {
// Exported methods are always potentially callable via reflection.
r.addReachable(r.prog.MethodValue(sel), true)
}
}
// Add callgraph edge for each existing dynamic
// "invoke"-mode call via that interface.
for _, I := range r.interfaces(T) {
sites, _ := r.invokeSites.At(I).([]ssa.CallInstruction)
for _, site := range sites {
r.addInvokeEdge(site, T)
}
}
}
// Precondition: T is not a method signature (*Signature with Recv()!=nil).
// Recursive case: skip => don't call makeMethods(T).
// Each package maintains its own set of types it has visited.
var n *types.Named
switch T := T.(type) {
case *types.Named:
n = T
case *types.Pointer:
n, _ = T.Elem().(*types.Named)
}
if n != nil {
owner := n.Obj().Pkg()
if owner == nil {
return // built-in error type
}
}
// Recursion over signatures of each exported method.
for i := 0; i < mset.Len(); i++ {
if mset.At(i).Obj().Exported() {
sig := mset.At(i).Type().(*types.Signature)
r.addRuntimeType(sig.Params(), true) // skip the Tuple itself
r.addRuntimeType(sig.Results(), true) // skip the Tuple itself
}
}
switch t := T.(type) {
case *types.Basic:
// nop
case *types.Interface:
// nop---handled by recursion over method set.
case *types.Pointer:
r.addRuntimeType(t.Elem(), false)
case *types.Slice:
r.addRuntimeType(t.Elem(), false)
case *types.Chan:
r.addRuntimeType(t.Elem(), false)
case *types.Map:
r.addRuntimeType(t.Key(), false)
r.addRuntimeType(t.Elem(), false)
case *types.Signature:
if t.Recv() != nil {
panic(fmt.Sprintf("Signature %s has Recv %s", t, t.Recv()))
}
r.addRuntimeType(t.Params(), true) // skip the Tuple itself
r.addRuntimeType(t.Results(), true) // skip the Tuple itself
case *types.Named:
// A pointer-to-named type can be derived from a named
// type via reflection. It may have methods too.
r.addRuntimeType(types.NewPointer(T), false)
// Consider 'type T struct{S}' where S has methods.
// Reflection provides no way to get from T to struct{S},
// only to S, so the method set of struct{S} is unwanted,
// so set 'skip' flag during recursion.
//.........這裏部分代碼省略.........