本文整理匯總了Golang中github.com/shuLhan/tabula.ClasetInterface.GetColumn方法的典型用法代碼示例。如果您正苦於以下問題:Golang ClasetInterface.GetColumn方法的具體用法?Golang ClasetInterface.GetColumn怎麽用?Golang ClasetInterface.GetColumn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/shuLhan/tabula.ClasetInterface
的用法示例。
在下文中一共展示了ClasetInterface.GetColumn方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: SelectRandomFeature
// SelectRandomFeature if NRandomFeature is greater than zero, select and
// compute gain in n random features instead of in all features
func (runtime *Runtime) SelectRandomFeature(D tabula.ClasetInterface) {
if runtime.NRandomFeature <= 0 {
// all features selected
return
}
ncols := D.GetNColumn()
// count all features minus class
nfeature := ncols - 1
if runtime.NRandomFeature >= nfeature {
// Do nothing if number of random feature equal or greater than
// number of feature in dataset.
return
}
// exclude class index and parent node index
excludeIdx := []int{D.GetClassIndex()}
cols := D.GetColumns()
for x, col := range *cols {
if (col.Flag & ColFlagParent) == ColFlagParent {
excludeIdx = append(excludeIdx, x)
} else {
(*cols)[x].Flag |= ColFlagSkip
}
}
// Select random features excluding feature in `excludeIdx`.
var pickedIdx []int
for x := 0; x < runtime.NRandomFeature; x++ {
idx := numerus.IntPickRandPositive(ncols, false, pickedIdx,
excludeIdx)
pickedIdx = append(pickedIdx, idx)
// Remove skip flag on selected column
col := D.GetColumn(idx)
col.Flag = col.Flag &^ ColFlagSkip
}
if DEBUG >= 1 {
fmt.Println("[cart] selected random features:", pickedIdx)
fmt.Println("[cart] selected columns :", D.GetColumns())
}
}
示例2: splitTreeByGain
/*
splitTreeByGain calculate the gain in all dataset, and split into two node:
left and right.
Return node with the split information.
*/
func (runtime *Runtime) splitTreeByGain(D tabula.ClasetInterface) (
node *binary.BTNode,
e error,
) {
node = &binary.BTNode{}
D.RecountMajorMinor()
// if dataset is empty return node labeled with majority classes in
// dataset.
nrow := D.GetNRow()
if nrow <= 0 {
if DEBUG >= 2 {
fmt.Printf("[cart] empty dataset (%s) : %v\n",
D.MajorityClass(), D)
}
node.Value = NodeValue{
IsLeaf: true,
Class: D.MajorityClass(),
Size: 0,
}
return node, nil
}
// if all dataset is in the same class, return node as leaf with class
// is set to that class.
single, name := D.IsInSingleClass()
if single {
if DEBUG >= 2 {
fmt.Printf("[cart] in single class (%s): %v\n", name,
D.GetColumns())
}
node.Value = NodeValue{
IsLeaf: true,
Class: name,
Size: nrow,
}
return node, nil
}
if DEBUG >= 2 {
fmt.Println("[cart] D:", D)
}
// calculate the Gini gain for each attribute.
gains := runtime.computeGain(D)
// get attribute with maximum Gini gain.
MaxGainIdx := gini.FindMaxGain(&gains)
MaxGain := gains[MaxGainIdx]
// if maxgain value is 0, use majority class as node and terminate
// the process
if MaxGain.GetMaxGainValue() == 0 {
if DEBUG >= 2 {
fmt.Println("[cart] max gain 0 with target",
D.GetClassAsStrings(),
" and majority class is ", D.MajorityClass())
}
node.Value = NodeValue{
IsLeaf: true,
Class: D.MajorityClass(),
Size: 0,
}
return node, nil
}
// using the sorted index in MaxGain, sort all field in dataset
tabula.SortColumnsByIndex(D, MaxGain.SortedIndex)
if DEBUG >= 2 {
fmt.Println("[cart] maxgain:", MaxGain)
}
// Now that we have attribute with max gain in MaxGainIdx, and their
// gain dan partition value in Gains[MaxGainIdx] and
// GetMaxPartValue(), we split the dataset based on type of max-gain
// attribute.
// If its continuous, split the attribute using numeric value.
// If its discrete, split the attribute using subset (partition) of
// nominal values.
var splitV interface{}
if MaxGain.IsContinu {
splitV = MaxGain.GetMaxPartGainValue()
} else {
attrPartV := MaxGain.GetMaxPartGainValue()
attrSubV := attrPartV.(tekstus.ListStrings)
splitV = attrSubV[0].Normalize()
}
//.........這裏部分代碼省略.........