本文整理匯總了Golang中github.com/runningwild/linear.Seg2.DoesIsect方法的典型用法代碼示例。如果您正苦於以下問題:Golang Seg2.DoesIsect方法的具體用法?Golang Seg2.DoesIsect怎麽用?Golang Seg2.DoesIsect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/runningwild/linear.Seg2
的用法示例。
在下文中一共展示了Seg2.DoesIsect方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: fireDoLine
func fireDoLine(c *cmwc.Cmwc, pos linear.Vec2, angle, stored float64, speed int, level *game.Level) fireExplosion {
rng := rand.New(c)
ray := (linear.Vec2{1, 0})
// ray.Scale(math.Abs(rng.NormFloat64()/10) + 50)
scale := (stored/5 + 50) * (1 + rng.Float64()*(0.2+stored/2000))
ray = ray.Rotate(angle).Rotate(rng.NormFloat64() * (0.2 + stored/7500)).Scale(scale)
seg := linear.Seg2{pos, pos.Add(ray)}
base.DoOrdered(level.Room.Walls, func(a, b string) bool { return a < b }, func(_ string, poly linear.Poly) {
for i := range poly {
if seg.DoesIsect(poly.Seg(i)) {
isect := seg.Isect(poly.Seg(i))
seg.Q = isect
}
}
})
p1 := rng.Intn(speed)
p2 := rng.Intn(speed)
p3 := rng.Intn(speed)
return fireExplosion{
Pos: seg.Q,
Radius: rng.Float64()*40 + 30,
Timer: 0,
Start: 1*speed + p1,
Peak: 4*speed + p1 + p2,
End: 5*speed + p1 + p2 + p3,
}
}
示例2: Think
func (p *lightningBoltProc) Think(g *game.Game) {
p.NumThinks++
if p.NumThinks < p.BuildThinks {
return
}
perp := p.Seg.Ray().Cross().Norm().Scale(p.Width / 2)
for _, ent := range g.Ents {
entSeg := linear.Seg2{
ent.Pos().Sub(perp),
ent.Pos().Add(perp),
}
if entSeg.DoesIsect(p.Seg) {
ent.Stats().ApplyDamage(stats.Damage{stats.DamageFire, p.Dps * p.Power})
}
}
// for _, ent := range g.Ents {
// if ent.Pos().Sub(p.Pos).Mag2() <= p.CurrentRadius*p.CurrentRadius {
// ent.Stats().ApplyDamage(stats.Damage{stats.DamageFire, p.Dps})
// }
// }
}
示例3: GenerateRoom
//.........這裏部分代碼省略.........
for i := range poss {
for j := range poss {
dist := poss[i].Sub(poss[j]).Mag()
if dist > maxDist {
maxDist = dist
}
}
}
var a, b int
minDist := maxDist * 3 / 4
hits := 1.0
for i := range poss {
for j := range poss {
if i == j {
continue
}
dist := poss[i].Sub(poss[j]).Mag()
if dist > minDist && r.Float64() < 1.0/hits {
a, b = i, j
hits = hits + 1
}
}
}
room.Starts = []linear.Vec2{poss[a], poss[b]}
for _, start := range room.Starts {
var data mobaRoomSideData
data.Base = start
room.Moba.SideData = append(room.Moba.SideData, data)
}
var data mobaRoomSideData
for i, pos := range poss {
if i == a || i == b {
continue
}
data.Towers = append(data.Towers, pos)
}
room.Moba.SideData = append(room.Moba.SideData, data)
sanity = int(math.Pow(dx*dy, 0.20))
var segs []linear.Seg2
for sanity > 0 {
a := linear.Vec2{r.Float64() * (dx), r.Float64() * (dy)}
length := gridify(r.Float64()*radius+(radius), grid)
angle := float64(r.Intn(4)) * 3.1415926535 / 2
ray := (linear.Vec2{1, 0}).Rotate(angle)
seg := linear.Seg2{a, a.Add(ray.Scale(length))}
seg.P.X = gridify(seg.P.X, grid)
seg.P.Y = gridify(seg.P.Y, grid)
seg.Q.X = gridify(seg.Q.X, grid)
seg.Q.Y = gridify(seg.Q.Y, grid)
good := true
if seg.P.X <= 0 || seg.P.X >= dx || seg.P.Y <= 0 || seg.P.Y >= dy {
good = false
}
if seg.Q.X <= 0 || seg.Q.X >= dx || seg.Q.Y <= 0 || seg.Q.Y >= dy {
good = false
}
if seg.P.X == seg.Q.X && seg.P.Y == seg.Q.Y {
good = false
}
// Can't get too close to a circle
for _, p := range poss {
if distFromPointToSeg(p, seg) < radius/2 {
good = false
break
}
}
// Check to make sure this segment isn't coincident with any othe segment.
// To avoid annoying degeneracies we'll rotate the segment slightly.
rot := linear.Seg2{seg.P, seg.Ray().Rotate(0.01).Add(seg.P)}
for _, cur := range segs {
if rot.DoesIsect(cur) {
good = false
break
}
}
if !good {
sanity--
continue
}
segs = append(segs, seg)
}
for _, s := range segs {
right := s.Ray().Cross().Norm().Scale(-float64(grid))
s2 := linear.Seg2{s.Q.Add(right), s.P.Add(right)}
room.Walls[nextId()] = linear.Poly{s.P, s.Q, s2.P, s2.Q}
}
room.Walls[nextId()] = linear.Poly{
linear.Vec2{0, 0},
linear.Vec2{dx, 0},
linear.Vec2{dx, dy},
linear.Vec2{0, dy},
}
room.NextId = nextIdInt
return room
}
示例4: Think
func (b *BaseEnt) Think(g *Game) {
// This will clear out old conditions
b.StatsInst.Think()
var dead []int
// Calling DoOrdered is too slow, so we just sort the Gids ourselves and go
// through them in order.
pids := make([]int, len(b.Processes))[0:0]
for pid := range b.Processes {
pids = append(pids, pid)
}
sort.Ints(pids)
for _, pid := range pids {
proc := b.Processes[pid]
proc.Think(g)
if proc.Dead() {
dead = append(dead, pid)
} else {
b.StatsInst.ApplyCondition(proc)
}
}
// Removed dead processes from the ent
for _, id := range dead {
delete(b.Processes, id)
}
if b.Delta.Speed < -1.0 {
b.Delta.Speed = -1.0
}
if b.Delta.Speed > 1.0 {
b.Delta.Speed = 1.0
}
// TODO: Speed is a complete misnomer now - fix it!
force := b.Delta.Speed * (linear.Vec2{1, 0}).Rotate(b.Target.Angle).Dot((linear.Vec2{1, 0}).Rotate(b.Angle_))
b.ApplyForce((linear.Vec2{1, 0}).Rotate(b.Angle_).Scale(force * b.Stats().MaxAcc()))
mangle := math.Atan2(b.Velocity.Y, b.Velocity.X)
friction := g.Friction
b.Velocity = b.Velocity.Scale(
math.Pow(friction, 1+3*math.Abs(math.Sin(b.Angle_-mangle))))
if b.Velocity.Mag2() < 0.01 {
b.Velocity = linear.Vec2{0, 0}
} else {
size := b.Stats().Size()
sizeSq := size * size
// We pretend that the player is started from a little behind wherever they
// actually are. This makes it a lot easier to get collisions to make sense
// from frame to frame.
epsilon := b.Velocity.Norm().Scale(size / 2)
move := linear.Seg2{b.Position.Sub(epsilon), b.Position.Add(b.Velocity)}
prev := b.Position
walls := g.local.temp.WallCache.GetWalls(int(b.Position.X), int(b.Position.Y))
for _, wall := range walls {
// Don't bother with back-facing segments
if wall.Right(b.Position) {
continue
}
// Check against the segment itself
if wall.Ray().Cross().Dot(move.Ray()) <= 0 {
shiftNorm := wall.Ray().Cross().Norm()
shift := shiftNorm.Scale(size)
col := linear.Seg2{shift.Add(wall.P), shift.Add(wall.Q)}
if move.DoesIsect(col) {
cross := col.Ray().Cross()
fix := linear.Seg2{move.Q, cross.Add(move.Q)}
isect := fix.Isect(col)
move.Q = isect
}
}
}
for _, wall := range walls {
// Check against the leading vertex
{
v := wall.P
originMove := linear.Seg2{move.P.Sub(v), move.Q.Sub(v)}
originPerp := linear.Seg2{linear.Vec2{}, move.Ray().Cross()}
dist := originMove.DistFromOrigin()
if originPerp.DoesIsect(originMove) && dist < size {
// Stop passthrough
isect := originMove.Isect(originPerp).Add(v)
diff := math.Sqrt(sizeSq - dist*dist)
finalLength := isect.Sub(move.P).Mag() - diff
move.Q = move.Ray().Norm().Scale(finalLength).Add(move.P)
} else if v.Sub(move.Q).Mag2() < sizeSq {
move.Q = move.Q.Sub(v).Norm().Scale(size).Add(v)
}
}
}
b.Position = move.Q
b.Velocity = b.Position.Sub(prev)
}
if math.Abs(b.Angle_+b.Target.Angle-math.Pi) < 0.01 {
b.Angle_ += 0.1
} else {
frac := 0.80
//.........這裏部分代碼省略.........