本文整理匯總了Golang中github.com/roasbeef/btcd/rpctest.Harness.CoinbaseSpend方法的典型用法代碼示例。如果您正苦於以下問題:Golang Harness.CoinbaseSpend方法的具體用法?Golang Harness.CoinbaseSpend怎麽用?Golang Harness.CoinbaseSpend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/roasbeef/btcd/rpctest.Harness
的用法示例。
在下文中一共展示了Harness.CoinbaseSpend方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: getTestTxId
func getTestTxId(miner *rpctest.Harness) (*wire.ShaHash, error) {
script, err := txscript.PayToAddrScript(testAddr)
if err != nil {
return nil, err
}
outputs := []*wire.TxOut{&wire.TxOut{2e8, script}}
return miner.CoinbaseSpend(outputs)
}
示例2: loadTestCredits
func loadTestCredits(miner *rpctest.Harness, w *LightningWallet, numOutputs, btcPerOutput int) error {
// Using the mining node, spend from a coinbase output numOutputs to
// give us btcPerOutput with each output.
satoshiPerOutput := btcutil.Amount(btcPerOutput * 1e8)
addrs := make([]btcutil.Address, 0, numOutputs)
for i := 0; i < numOutputs; i++ {
// Grab a fresh address from the wallet to house this output.
walletAddr, err := w.NewAddress(waddrmgr.DefaultAccountNum)
if err != nil {
return err
}
addrs = append(addrs, walletAddr)
outputMap := map[string]btcutil.Amount{walletAddr.String(): satoshiPerOutput}
if _, err := miner.CoinbaseSpend(outputMap); err != nil {
return err
}
}
// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
// how many confs we wait before opening a channel.
// Generate 10 blocks with the mining node, this should mine all
// numOutputs transactions created above. We generate 10 blocks here
// in order to give all the outputs a "sufficient" number of confirmations.
if _, err := miner.Node.Generate(10); err != nil {
return err
}
_, bestHeight, err := miner.Node.GetBestBlock()
if err != nil {
return err
}
// Wait until the wallet has finished syncing up to the main chain.
ticker := time.NewTicker(100 * time.Millisecond)
out:
for {
select {
case <-ticker.C:
if w.Manager.SyncedTo().Height == bestHeight {
break out
}
}
}
ticker.Stop()
// Trigger a re-scan to ensure the wallet knows of the newly created
// outputs it can spend.
if err := w.Rescan(addrs, nil); err != nil {
return err
}
return nil
}
示例3: loadTestCredits
func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet, numOutputs, btcPerOutput int) error {
// Using the mining node, spend from a coinbase output numOutputs to
// give us btcPerOutput with each output.
satoshiPerOutput := int64(btcPerOutput * 1e8)
addrs := make([]btcutil.Address, 0, numOutputs)
for i := 0; i < numOutputs; i++ {
// Grab a fresh address from the wallet to house this output.
walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return err
}
script, err := txscript.PayToAddrScript(walletAddr)
if err != nil {
return err
}
addrs = append(addrs, walletAddr)
output := &wire.TxOut{satoshiPerOutput, script}
if _, err := miner.CoinbaseSpend([]*wire.TxOut{output}); err != nil {
return err
}
}
// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
// how many confs we wait before opening a channel.
// Generate 10 blocks with the mining node, this should mine all
// numOutputs transactions created above. We generate 10 blocks here
// in order to give all the outputs a "sufficient" number of confirmations.
if _, err := miner.Node.Generate(10); err != nil {
return err
}
// Wait until the wallet has finished syncing up to the main chain.
ticker := time.NewTicker(100 * time.Millisecond)
expectedBalance := btcutil.Amount(satoshiPerOutput * int64(numOutputs))
out:
for {
select {
case <-ticker.C:
balance, err := w.ConfirmedBalance(1, false)
if err != nil {
return err
}
if balance == expectedBalance {
break out
}
}
}
ticker.Stop()
return nil
}
示例4: testListTransactionDetails
func testListTransactionDetails(miner *rpctest.Harness, wallet *lnwallet.LightningWallet, t *testing.T) {
t.Log("Running list transaction details test")
// Create 5 new outputs spendable by the wallet.
const numTxns = 5
const outputAmt = btcutil.SatoshiPerBitcoin
txids := make(map[wire.ShaHash]struct{})
for i := 0; i < numTxns; i++ {
addr, err := wallet.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{outputAmt, script}
txid, err := miner.CoinbaseSpend([]*wire.TxOut{output})
if err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
txids[*txid] = struct{}{}
}
// Generate 10 blocks to mine all the transactions created above.
const numBlocksMined = 10
blocks, err := miner.Node.Generate(numBlocksMined)
if err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Next, fetch all the current transaction details.
// TODO(roasbeef): use ntfn client here instead?
time.Sleep(time.Second * 2)
txDetails, err := wallet.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
// Each of the transactions created above should be found with the
// proper details populated.
for _, txDetail := range txDetails {
if _, ok := txids[txDetail.Hash]; !ok {
continue
}
if txDetail.NumConfirmations != numBlocksMined {
t.Fatalf("num confs incorrect, got %v expected %v",
txDetail.NumConfirmations, numBlocksMined)
}
if txDetail.Value != outputAmt {
t.Fatalf("tx value incorrect, got %v expected %v",
txDetail.Value, outputAmt)
}
if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) {
t.Fatalf("block hash mismatch, got %v expected %v",
txDetail.BlockHash, blocks[0])
}
delete(txids, txDetail.Hash)
}
if len(txids) != 0 {
t.Fatalf("all transactions not found in details!")
}
// Next create a transaction paying to an output which isn't under the
// wallet's control.
b := txscript.NewScriptBuilder()
b.AddOp(txscript.OP_0)
outputScript, err := b.Script()
if err != nil {
t.Fatalf("unable to make output script: %v", err)
}
burnOutput := wire.NewTxOut(outputAmt, outputScript)
burnTXID, err := wallet.SendOutputs([]*wire.TxOut{burnOutput})
if err != nil {
t.Fatalf("unable to create burn tx: %v", err)
}
burnBlock, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to mine block: %v", err)
}
// Fetch the transaction details again, the new transaction should be
// shown as debiting from the wallet's balance.
time.Sleep(time.Second * 2)
txDetails, err = wallet.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
var burnTxFound bool
for _, txDetail := range txDetails {
if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
continue
}
burnTxFound = true
if txDetail.NumConfirmations != 1 {
t.Fatalf("num confs incorrect, got %v expected %v",
//.........這裏部分代碼省略.........
示例5: newBobNode
// newBobNode generates a test "ln node" to interact with Alice (us). For the
// funding transaction, bob has a single output totaling 7BTC. For our basic
// test, he'll fund the channel with 5BTC, leaving 2BTC to the change output.
// TODO(roasbeef): proper handling of change etc.
func newBobNode(miner *rpctest.Harness, amt btcutil.Amount) (*bobNode, error) {
// First, parse Bob's priv key in order to obtain a key he'll use for the
// multi-sig funding transaction.
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
// Next, generate an output redeemable by bob.
pkHash := btcutil.Hash160(pubKey.SerializeCompressed())
bobAddr, err := btcutil.NewAddressWitnessPubKeyHash(
pkHash,
miner.ActiveNet)
if err != nil {
return nil, err
}
bobAddrScript, err := txscript.PayToAddrScript(bobAddr)
if err != nil {
return nil, err
}
// Give bobNode one 7 BTC output for use in creating channels.
output := &wire.TxOut{7e8, bobAddrScript}
mainTxid, err := miner.CoinbaseSpend([]*wire.TxOut{output})
if err != nil {
return nil, err
}
// Mine a block in order to include the above output in a block. During
// the reservation workflow, we currently test to ensure that the funding
// output we're given actually exists.
if _, err := miner.Node.Generate(1); err != nil {
return nil, err
}
// Grab the transaction in order to locate the output index to Bob.
tx, err := miner.Node.GetRawTransaction(mainTxid)
if err != nil {
return nil, err
}
found, index := lnwallet.FindScriptOutputIndex(tx.MsgTx(), bobAddrScript)
if !found {
return nil, fmt.Errorf("output to bob never created")
}
prevOut := wire.NewOutPoint(mainTxid, index)
bobTxIn := wire.NewTxIn(prevOut, nil, nil)
// Using bobs priv key above, create a change output he can spend.
bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript)
// Bob's initial revocation hash is just his private key with the first
// byte changed...
var revocation [32]byte
copy(revocation[:], bobsPrivKey)
revocation[0] = 0xff
// His ID is just as creative...
var id [wire.HashSize]byte
id[0] = 0xff
return &bobNode{
id: pubKey,
privKey: privKey,
channelKey: pubKey,
deliveryAddress: bobAddr,
revocation: revocation,
fundingAmt: amt,
delay: 5,
availableOutputs: []*wire.TxIn{bobTxIn},
changeOutputs: []*wire.TxOut{bobChangeOutput},
}, nil
}
示例6: testTransactionSubscriptions
func testTransactionSubscriptions(miner *rpctest.Harness, w *lnwallet.LightningWallet, t *testing.T) {
t.Log("Running transaction subscriptions test")
// First, check to see if this wallet meets the TransactionNotifier
// interface, if not then we'll skip this test for this particular
// implementation of the WalletController.
txClient, err := w.SubscribeTransactions()
if err != nil {
t.Fatalf("unable to generate tx subscription: %v")
}
defer txClient.Cancel()
const (
outputAmt = btcutil.SatoshiPerBitcoin
numTxns = 3
)
unconfirmedNtfns := make(chan struct{})
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.UnconfirmedTransactions()
if txDetail.NumConfirmations != 0 {
t.Fatalf("incorrect number of confs, expected %v got %v",
0, txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, expected %v got %v",
outputAmt, txDetail.Value)
}
if txDetail.BlockHash != nil {
t.Fatalf("block hash should be nil, is instead %v",
txDetail.BlockHash)
}
}
close(unconfirmedNtfns)
}()
// Next, fetch a fresh address from the wallet, create 3 new outputs
// with the pkScript.
for i := 0; i < numTxns; i++ {
addr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{outputAmt, script}
if _, err := miner.CoinbaseSpend([]*wire.TxOut{output}); err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
}
// We should receive a notification for all three transactions
// generated above.
select {
case <-time.After(time.Second * 5):
t.Fatalf("transactions not received after 3 seconds")
case <-unconfirmedNtfns: // Fall through on successs
}
confirmedNtfns := make(chan struct{})
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.ConfirmedTransactions()
if txDetail.NumConfirmations != 1 {
t.Fatalf("incorrect number of confs, expected %v got %v",
0, txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, expected %v got %v",
outputAmt, txDetail.Value)
}
}
close(confirmedNtfns)
}()
// Next mine a single block, all the transactions generated above
// should be included.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We should receive a notification for all three transactions
// since they should be mined in the next block.
select {
case <-time.After(time.Second * 5):
t.Fatalf("transactions not received after 3 seconds")
case <-confirmedNtfns: // Fall through on successs
}
}