本文整理匯總了Golang中github.com/opinionated/pipeline.StandardModule類的典型用法代碼示例。如果您正苦於以下問題:Golang StandardModule類的具體用法?Golang StandardModule怎麽用?Golang StandardModule使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了StandardModule類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: getConceptModule
func getConceptModule() (pipeline.Module, error) {
weight := 1.0
scoreFunc := getCountSqLambdaWithWeight(weight)
neoFunc := pipeline.NeoAnalyzer{MetadataType: "Concept",
ScoreFunc: scoreFunc}
module := new(pipeline.StandardModule)
module.SetFuncs(&neoFunc)
return module, nil
}
示例2: getTaxonomyModule
func getTaxonomyModule() (pipeline.Module, error) {
weight := 1.0
scoreFunc := getCountSqLambdaWithWeight(weight)
taxFunc := pipeline.NeoAnalyzer{MetadataType: "Taxonomy",
ScoreFunc: scoreFunc}
taxModule := new(pipeline.StandardModule)
taxModule.SetFuncs(&taxFunc) // is safe to ref local value
return taxModule, nil
}
示例3: TestError
func TestError(t *testing.T) {
errFunc := errorAnalyzer{when: 2}
funcModule := pipeline.StandardModule{}
funcModule.SetFuncs(&errFunc)
pipe := pipeline.NewPipeline()
pipe.AddStage(&funcModule)
story := storyFromSet(simpleSet)
data, err := storyDriver(pipe, story)
assert.NotNil(t, err)
assert.EqualError(t, err, "Error(s) closing pipeline:\n\tok bump!")
assert.Len(t, data, 0)
}
示例4: TestBump
func TestBump(t *testing.T) {
add := addAnalyzer{howmuch: 1}
addModule := pipeline.StandardModule{}
addModule.SetFuncs(add)
bump := bumpAnalyzer{when: 1, count: 0}
bumpModule := pipeline.StandardModule{}
bumpModule.SetFuncs(&bump)
pipe := pipeline.NewPipeline()
pipe.AddStage(&addModule)
pipe.AddStage(&bumpModule)
story := storyFromSet(simpleSet)
data, err := storyDriver(pipe, story)
assert.Nil(t, err)
assert.Len(t, data, 2)
for i := range data {
scorei, err := data[i].GetScore("add")
assert.Nil(t, err)
score := scorei.(TestStandardScore)
assert.EqualValues(t, 1.0, score.score)
}
}
示例5: TestStandardAdd
func TestStandardAdd(t *testing.T) {
add := addAnalyzer{howmuch: 1}
funcModule := pipeline.StandardModule{}
funcModule.SetFuncs(add)
pipe := pipeline.NewPipeline()
pipe.AddStage(&funcModule)
story := storyFromSet(simpleSet)
data, err := storyDriver(pipe, story)
assert.Nil(t, err)
assert.Len(t, data, 3)
for i := range data {
scorei, err := data[i].GetScore("add")
assert.Nil(t, err)
score := scorei.(TestStandardScore)
assert.EqualValues(t, 1.0, score.score)
}
}
示例6: TestFull
func TestFull(t *testing.T) {
taxFunc := pipeline.NeoAnalyzer{MetadataType: "Taxonomy"}
taxModule := pipeline.StandardModule{}
taxModule.SetFuncs(taxFunc)
conceptsFunc := pipeline.NeoAnalyzer{MetadataType: "Concept"}
conceptsModule := pipeline.StandardModule{}
conceptsModule.SetFuncs(conceptsFunc)
keyFunc := pipeline.NeoAnalyzer{MetadataType: "Keyword"}
keyModule := pipeline.StandardModule{}
keyModule.SetFuncs(&keyFunc)
entityFunc := pipeline.NeoAnalyzer{MetadataType: "Entity"}
entityModule := pipeline.StandardModule{}
entityModule.SetFuncs(&entityFunc)
// idf funcs
keyIDFFunc := pipeline.IDFAnalyzer{MetadataType: "Keyword"}
keyIDFModule := pipeline.StandardModule{}
keyIDFModule.SetFuncs(&keyIDFFunc)
entityIDFFunc := pipeline.IDFAnalyzer{MetadataType: "Entity"}
entityIDFModule := pipeline.StandardModule{}
entityIDFModule.SetFuncs(&entityIDFFunc)
conceptIDFFunc := pipeline.IDFAnalyzer{MetadataType: "Concept"}
conceptIDFModule := pipeline.StandardModule{}
conceptIDFModule.SetFuncs(&conceptIDFFunc)
// word2vec
entityWVFunc := pipeline.WordVecAnalyzer{MetadataType: "Entity"}
entityWVModule := pipeline.StandardModule{}
entityWVModule.SetFuncs(&entityWVFunc)
conceptWVFunc := pipeline.WordVecAnalyzer{MetadataType: "Concept"}
conceptWVModule := pipeline.StandardModule{}
conceptWVModule.SetFuncs(&conceptWVFunc)
keyWVFunc := pipeline.WordVecAnalyzer{MetadataType: "Keyword"}
keyWVModule := pipeline.StandardModule{}
keyWVModule.SetFuncs(&keyWVFunc)
scoreFuncs := make(map[string]func(pipeline.Score) float32)
scoreFuncs["neo_Taxonomy"] = SquareCount //SquareFlow
scoreFuncs["neo_Concept"] = SquareCount
scoreFuncs["neo_Keyword"] = ScoreAverage
scoreFuncs["neo_Entity"] = ScoreAverage
scoreFuncs["idf_Keyword"] = IDFAverage
scoreFuncs["idf_Entity"] = IDFAverage
scoreFuncs["idf_Concept"] = IDFAverage
scoreFuncs["wordvec_Concept"] = SquareFlow
scoreFuncs["wordvec_Keyword"] = SquareFlow
scoreFuncs["wordvec_Entity"] = SquareFlow
weightMap := make(map[string]float32)
weightMap["neo_Taxonomy"] = 3.0
weightMap["neo_Concept"] = 3.0
weightMap["neo_Keyword"] = 3.0
weightMap["neo_Entity"] = 3.0
weightMap["idf_Keyword"] = 10.0
weightMap["idf_Entity"] = 10.0
weightMap["idf_Concept"] = 10.0
weightMap["wordvec_Taxonomy"] = 10.0
weightMap["wordvec_Concept"] = 15.0
weightMap["wordvec_Keyword"] = 10.0
weightMap["wordvec_Entity"] = 10.0
threshFunc := threshAnalyzer{0.0, scoreFuncs, weightMap}
threshModule := pipeline.StandardModule{}
threshModule.SetFuncs(threshFunc)
lastThreshFunc := threshAnalyzer{0.0, scoreFuncs, weightMap}
lastThreshModule := pipeline.StandardModule{}
lastThreshModule.SetFuncs(lastThreshFunc)
// build the pipe
pipe := pipeline.NewPipeline()
// 1.1 seems to do it for words
// do coarse methods
// pipe.AddStage(&taxModule)
//pipe.AddStage(&conceptsModule)
//pipe.AddStage(&keyIDFModule)
//pipe.AddStage(&entityIDFModule)
//pipe.AddStage(&conceptIDFModule)
//pipe.AddStage(&threshModule)
pipe.AddStage(&entityWVModule)
pipe.AddStage(&conceptWVModule)
//pipe.AddStage(&lastThreshModule)
pipe.AddStage(&keyWVModule)
// thresh then do finer methods
//pipe.AddStage(&keyModule)
//pipe.AddStage(&entityModule)
// build the story
assert.Nil(t, relationDB.Open("http://localhost:7474"))
//.........這裏部分代碼省略.........