本文整理匯總了Golang中github.com/mafredri/go-trueskill/collection.DistributionBag類的典型用法代碼示例。如果您正苦於以下問題:Golang DistributionBag類的具體用法?Golang DistributionBag怎麽用?Golang DistributionBag使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了DistributionBag類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: GaussianGreaterThan
// GaussianGreaterThan calculates the greater than margin for the factor graph.
func (gf GaussianFactors) GaussianGreaterThan(epsilon float64, varIdx int, varBag *collection.DistributionBag) Factor {
msgIdx := gf.msgBag.NextIndex()
updateMessage := func(i int) float64 {
if i != 0 {
panic("Index out of range.")
}
return gaussianGreaterThanOrWithinUpdateMessage(epsilon, msgIdx, varIdx, gf.msgBag, varBag,
VGreaterThan, WGreaterThan)
}
logNormalization := func() float64 {
marginal := varBag.Get(varIdx)
msg := gf.msgBag.Get(msgIdx)
msgFromVar := marginal.Div(msg)
logProdNorm := gaussian.LogProdNorm(msgFromVar, msg)
return -logProdNorm + math.Log(gaussian.NormCdf((msgFromVar.Mean()-epsilon)/msgFromVar.StdDev()))
}
sendMessage := func(i int) float64 {
if i != 0 {
panic("Index out of range")
}
return sendMessageHelper(msgIdx, varIdx, gf.msgBag, varBag)
}
return Factor{
UpdateMessage: updateMessage,
LogNormalization: logNormalization,
NumMessages: 1,
ResetMarginals: func() { varBag.PutPriorAt(varIdx) },
SendMessage: sendMessage,
}
}
示例2: sendMessageHelper
func sendMessageHelper(msgIdx, varIdx int, msgBag, varBag *collection.DistributionBag) float64 {
mar := varBag.Get(varIdx)
msg := msgBag.Get(msgIdx)
varBag.Put(varIdx, mar.Mul(msg))
// logZ
return gaussian.LogProdNorm(mar, msg)
}
示例3: buildSkillFactors
func buildSkillFactors(ts Config, players Players, draws []bool, varBag *collection.DistributionBag) (skillFactors, []int, factor.List) {
sf := skillFactors{}
gf := factor.NewGaussianFactors()
factorList := factor.NewList()
numPlayers := players.Len()
skillIndex := []int{}
for i := 0; i < numPlayers; i++ {
skillIndex = append(skillIndex, varBag.NextIndex())
}
for i := 0; i < numPlayers; i++ {
priorSkill := players[i]
gpf := gf.GaussianPrior(priorSkill.Mean(), priorSkill.Variance()+(ts.Tau*ts.Tau), skillIndex[i], varBag)
sf.skillPriorFactors = append(sf.skillPriorFactors, gpf)
factorList.Add(gpf)
}
for i := 0; i < numPlayers; i++ {
sf.playerPerformances = append(sf.playerPerformances, varBag.NextIndex())
}
for i := 0; i < numPlayers; i++ {
glf := gf.GaussianLikeliehood(ts.Beta*ts.Beta, sf.playerPerformances[i], skillIndex[i], varBag, varBag)
sf.skillToPerformanceFactors = append(sf.skillToPerformanceFactors, glf)
factorList.Add(glf)
}
for i := 0; i < numPlayers-1; i++ {
sf.playerPerformanceDifferences = append(sf.playerPerformanceDifferences, varBag.NextIndex())
}
for i := 0; i < numPlayers-1; i++ {
gws := gf.GaussianWeightedSum(1.0, -1.0, sf.playerPerformanceDifferences[i], sf.playerPerformances[i],
sf.playerPerformances[i+1], varBag, varBag, varBag)
sf.performanceToPerformanceDifferencFactors = append(sf.performanceToPerformanceDifferencFactors, gws)
factorList.Add(gws)
}
// TODO: Calculate e (epsilon) separately for each
epsilon := drawMargin(ts.Beta, ts.DrawProb)
for i, draw := range draws {
var f factor.Factor
if draw {
f = gf.GaussianWithin(epsilon, sf.playerPerformanceDifferences[i], varBag)
} else {
f = gf.GaussianGreaterThan(epsilon, sf.playerPerformanceDifferences[i], varBag)
}
sf.greatherThanOrWithinFactors = append(sf.greatherThanOrWithinFactors, f)
factorList.Add(f)
}
return sf, skillIndex, factorList
}
示例4: gaussianGreaterThanOrWithinUpdateMessage
func gaussianGreaterThanOrWithinUpdateMessage(epsilon float64, msgIdx, varIdx int,
msgBag, varBag *collection.DistributionBag, vFunc, wFunc func(t, epsilon float64) float64) float64 {
oldMarginal := varBag.Get(varIdx)
oldMsg := msgBag.Get(msgIdx)
msgFromVar := oldMarginal.Div(oldMsg)
c := msgFromVar.Precision
d := msgFromVar.PrecisionMean
sqrtC := math.Sqrt(c)
dOnSqrtC := d / sqrtC
epsTimesSqrtC := epsilon * sqrtC
denom := 1.0 - wFunc(dOnSqrtC, epsTimesSqrtC)
newPrecision := c / denom
newPrecisionMean := (d + sqrtC*vFunc(dOnSqrtC, epsTimesSqrtC)) / denom
newMarginal := gaussian.NewFromPrecision(newPrecisionMean, newPrecision)
newMsg := oldMsg.Mul(newMarginal).Div(oldMarginal)
msgBag.Put(msgIdx, newMsg)
varBag.Put(varIdx, newMarginal)
return newMarginal.Sub(oldMarginal)
}
示例5: GaussianPrior
// GaussianPrior calculates the prior for the factor graph.
func (gf GaussianFactors) GaussianPrior(mu, sigmaSquared float64, varIdx int,
varBag *collection.DistributionBag) Factor {
msgIdx := gf.msgBag.NextIndex()
newMsg := gaussian.NewFromMeanAndVariance(mu, sigmaSquared)
updateMessage := func(i int) float64 {
if i != 0 {
panic("Index out of range")
}
oldMarginal := varBag.Get(varIdx)
oldMsg := gf.msgBag.Get(msgIdx)
newMarginal := gaussian.NewFromPrecision(oldMarginal.PrecisionMean+newMsg.PrecisionMean-oldMsg.PrecisionMean,
oldMarginal.Precision+newMsg.Precision-oldMsg.Precision)
varBag.Put(varIdx, newMarginal)
gf.msgBag.Put(msgIdx, newMsg)
delta := oldMarginal.Sub(newMarginal)
return delta
}
sendMessage := func(i int) float64 {
if i != 0 {
panic("Index out of range")
}
return sendMessageHelper(msgIdx, varIdx, gf.msgBag, varBag)
}
return Factor{
UpdateMessage: updateMessage,
LogNormalization: func() float64 { return 0 },
NumMessages: 1,
ResetMarginals: func() { varBag.PutPriorAt(varIdx) },
SendMessage: sendMessage,
}
}
示例6: GaussianLikeliehood
// GaussianLikeliehood calculates the likeliehood for the factor graph.
func (gf GaussianFactors) GaussianLikeliehood(betaSquared float64, varIdx1, varIdx2 int, varBag1, varBag2 *collection.DistributionBag) Factor {
msgIdx1 := gf.msgBag.NextIndex()
msgIdx2 := gf.msgBag.NextIndex()
prec := 1.0 / betaSquared
updateHelper := func(m1, m2, v1, v2 int, bag1, bag2 *collection.DistributionBag) float64 {
msg1 := gf.msgBag.Get(m1)
msg2 := gf.msgBag.Get(m2)
mar1 := bag1.Get(v1)
mar2 := bag2.Get(v2)
a := prec / (prec + mar2.Precision - msg2.Precision)
newMsg := gaussian.NewFromPrecision(a*(mar2.PrecisionMean-msg2.PrecisionMean),
a*(mar2.Precision-msg2.Precision))
oldMarginalWithoutMsg := mar1.Div(msg1)
newMarginal := oldMarginalWithoutMsg.Mul(newMsg)
gf.msgBag.Put(m1, newMsg)
bag1.Put(v1, newMarginal)
delta := newMarginal.Sub(mar1)
return delta
}
updateMessage := func(i int) float64 {
switch i {
case 0:
return updateHelper(msgIdx1, msgIdx2, varIdx1, varIdx2, varBag1, varBag2)
case 1:
return updateHelper(msgIdx2, msgIdx1, varIdx2, varIdx1, varBag2, varBag1)
default:
panic("Index out of range")
}
}
logNormalization := func() float64 {
logNorm := gaussian.LogRatioNorm(varBag1.Get(varIdx1), gf.msgBag.Get(msgIdx1))
return logNorm
}
resetMarginals := func() {
varBag1.PutPriorAt(varIdx1)
varBag2.PutPriorAt(varIdx2)
}
sendMessage := func(i int) float64 {
switch i {
case 0:
return sendMessageHelper(msgIdx1, varIdx1, gf.msgBag, varBag1)
case 1:
return sendMessageHelper(msgIdx2, varIdx2, gf.msgBag, varBag2)
default:
panic("Index out of range")
}
}
return Factor{
UpdateMessage: updateMessage,
LogNormalization: logNormalization,
NumMessages: 2,
ResetMarginals: resetMarginals,
SendMessage: sendMessage,
}
}
示例7: GaussianWeightedSum
// GaussianWeightedSum calculates the weighted sum for the facor graph.
func (gf GaussianFactors) GaussianWeightedSum(a1, a2 float64, varIdx0, varIdx1, varIdx2 int,
varBag0, varBag1, varBag2 *collection.DistributionBag) Factor {
msgIdx0 := gf.msgBag.NextIndex()
msgIdx1 := gf.msgBag.NextIndex()
msgIdx2 := gf.msgBag.NextIndex()
weights0 := []float64{a1, a2}
weights0Squared := []float64{weights0[0] * weights0[0], weights0[1] * weights0[1]}
weights1 := []float64{-a2 / a1, 1.0 / a1}
weights1Squared := []float64{weights1[0] * weights1[0], weights1[1] * weights1[1]}
weights2 := []float64{-a1 / a2, 1.0 / a2}
weights2Squared := []float64{weights2[0] * weights2[0], weights2[1] * weights2[1]}
updateHelper := func(w, wS []float64, m1, m2, m3, v1, v2, v3 int, bag1, bag2, bag3 *collection.DistributionBag) float64 {
d0 := bag2.Get(v2).Div(gf.msgBag.Get(m2))
d1 := bag3.Get(v3).Div(gf.msgBag.Get(m3))
msg1 := gf.msgBag.Get(m1)
mar1 := bag1.Get(v1)
denom := wS[0]*d1.Precision + wS[1]*d0.Precision
newPrecisionMean := (w[0]*d1.Precision*d0.PrecisionMean + w[1]*d0.Precision*d1.PrecisionMean) / denom
newPrecision := d0.Precision * d1.Precision / denom
newMsg := gaussian.NewFromPrecision(newPrecisionMean, newPrecision)
oldMarginalWithoutMsg := mar1.Div(msg1)
newMarginal := oldMarginalWithoutMsg.Mul(newMsg)
gf.msgBag.Put(m1, newMsg)
bag1.Put(v1, newMarginal)
return newMarginal.Sub(mar1)
}
updateMessage := func(i int) float64 {
switch i {
case 0:
return updateHelper(weights0, weights0Squared, msgIdx0, msgIdx1, msgIdx2, varIdx0, varIdx1, varIdx2,
varBag0, varBag1, varBag2)
case 1:
return updateHelper(weights1, weights1Squared, msgIdx1, msgIdx2, msgIdx0, varIdx1, varIdx2, varIdx0,
varBag1, varBag2, varBag0)
case 2:
return updateHelper(weights2, weights2Squared, msgIdx2, msgIdx1, msgIdx0, varIdx2, varIdx1, varIdx0,
varBag2, varBag1, varBag0)
default:
panic("Index out of range.")
}
}
logNormalization := func() float64 {
ratio1 := gaussian.LogRatioNorm(varBag1.Get(varIdx1), gf.msgBag.Get(msgIdx1))
ratio2 := gaussian.LogRatioNorm(varBag2.Get(varIdx2), gf.msgBag.Get(msgIdx2))
return ratio1 + ratio2
}
resetMarginals := func() {
varBag0.PutPriorAt(varIdx0)
varBag1.PutPriorAt(varIdx1)
varBag2.PutPriorAt(varIdx2)
}
sendMessage := func(i int) float64 {
switch i {
case 0:
return sendMessageHelper(msgIdx0, varIdx0, gf.msgBag, varBag0)
case 1:
return sendMessageHelper(msgIdx1, varIdx1, gf.msgBag, varBag1)
case 2:
return sendMessageHelper(msgIdx2, varIdx2, gf.msgBag, varBag2)
default:
panic("Index out of range")
}
}
return Factor{
UpdateMessage: updateMessage,
LogNormalization: logNormalization,
NumMessages: 3,
ResetMarginals: resetMarginals,
SendMessage: sendMessage,
}
}