本文整理匯總了Golang中github.com/hrautila/go/opt/linalg.GetParameters函數的典型用法代碼示例。如果您正苦於以下問題:Golang GetParameters函數的具體用法?Golang GetParameters怎麽用?Golang GetParameters使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了GetParameters函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: GbmvFloat
// See function Gbmv.
func GbmvFloat(A, X, Y *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, fgbmv, X, Y, A, params)
if err != nil {
return
}
if ind.M == 0 && ind.N == 0 {
return
}
Xa := X.FloatArray()
Ya := Y.FloatArray()
Aa := A.FloatArray()
if params.Trans == linalg.PNoTrans && ind.N == 0 {
dscal(ind.M, beta, Ya[ind.OffsetY:], ind.IncY)
} else if params.Trans == linalg.PTrans && ind.M == 0 {
dscal(ind.N, beta, Ya[ind.OffsetY:], ind.IncY)
} else {
trans := linalg.ParamString(params.Trans)
dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku,
alpha, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX,
beta, Ya[ind.OffsetY:], ind.IncY)
}
return
}
示例2: Syr2
/*
Symmetric rank-2 update.
syr2(x, y, A, uplo='L', alpha=1.0, n=A.size[0], incx=1, incy=1,
ldA=max(1,A.size[0]), offsetx=0, offsety=0, offsetA=0)
PURPOSE
Computes A := A + alpha*(x*y^T + y*x^T) with A real symmetric matrix of order n.
ARGUMENTS
x float matrix
y float matrix
A float matrix
alpha real number (int or float)
OPTIONS
uplo 'L' or 'U'
n integer. If negative, the default value is used.
incx nonzero integer
incy nonzero integer
ldA nonnegative integer. ldA >= max(1,n).
If zero the default value is used.
offsetx nonnegative integer
offsety nonnegative integer
offsetA nonnegative integer;
*/
func Syr2(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, fsyr2, X, Y, A, params)
if err != nil {
return
}
if !matrix.EqualTypes(A, X, Y) {
return errors.New("Parameters not of same type")
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := X.FloatArray()
Aa := A.FloatArray()
aval := alpha.Float()
if math.IsNaN(aval) {
return errors.New("alpha not a number")
}
uplo := linalg.ParamString(params.Uplo)
dsyr2(uplo, ind.N, aval, Xa[ind.OffsetX:], ind.IncX,
Ya[ind.OffsetY:], ind.IncY,
Aa[ind.OffsetA:], ind.LDa)
case *matrix.ComplexMatrix:
return errors.New("Not implemented yet for complx.Matrix")
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例3: GemmFloat
// See function Gemm.
func GemmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fgemm, A, B, C, params)
if err != nil {
return
}
if ind.M == 0 || ind.N == 0 {
return
}
Aa := A.FloatArray()
Ba := B.FloatArray()
Ca := C.FloatArray()
transB := linalg.ParamString(params.TransB)
transA := linalg.ParamString(params.TransA)
//diag := linalg.ParamString(params.Diag)
dgemm(transA, transB, ind.M, ind.N, ind.K, alpha,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, beta,
Ca[ind.OffsetC:], ind.LDc)
return
}
示例4: GbtrsFloat
func GbtrsFloat(A, B *matrix.FloatMatrix, ipiv []int32, KL int, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
ind.Kl = KL
err = checkGbtrs(ind, A, B, ipiv)
if err != nil {
return err
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
Aa := A.FloatArray()
Ba := B.FloatArray()
trans := linalg.ParamString(pars.Trans)
info := dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs,
Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb)
if info != 0 {
return errors.New(fmt.Sprintf("Gbtrs: call error: %d", info))
}
return nil
}
示例5: SymmFloat
// See function Symm.
func SymmFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fsymm, A, B, C, params)
if err != nil {
return
}
if ind.M == 0 || ind.N == 0 {
return
}
Aa := A.FloatArray()
Ba := B.FloatArray()
Ca := C.FloatArray()
uplo := linalg.ParamString(params.Uplo)
side := linalg.ParamString(params.Side)
dsymm(side, uplo, ind.M, ind.N, alpha, Aa[ind.OffsetA:], ind.LDa,
Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc)
return
}
示例6: Syr2kFloat
// See function Syrk2.
func Syr2kFloat(A, B, C *matrix.FloatMatrix, alpha, beta float64, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fsyr2k, A, B, C, params)
if err != nil {
return
}
if ind.N == 0 {
return
}
Aa := A.FloatArray()
Ba := B.FloatArray()
Ca := C.FloatArray()
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
//diag := linalg.ParamString(params.Diag)
dsyr2k(uplo, trans, ind.N, ind.K, alpha, Aa[ind.OffsetA:], ind.LDa,
Ba[ind.OffsetB:], ind.LDb, beta, Ca[ind.OffsetC:], ind.LDc)
return
}
示例7: GesvdFloat
func GesvdFloat(A, S, U, Vt *matrix.FloatMatrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
err = checkGesvd(ind, pars, A, S, U, Vt)
if err != nil {
return err
}
if ind.M == 0 || ind.N == 0 {
return nil
}
Aa := A.FloatArray()
Sa := S.FloatArray()
var Ua, Va []float64
Ua = nil
Va = nil
if U != nil {
Ua = U.FloatArray()[ind.OffsetU:]
}
if Vt != nil {
Va = Vt.FloatArray()[ind.OffsetVt:]
}
info := dgesvd(linalg.ParamString(pars.Jobu), linalg.ParamString(pars.Jobvt),
ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, Sa[ind.OffsetS:], Ua, ind.LDu, Va, ind.LDvt)
if info != 0 {
return errors.New("GesvdFloat not implemented yet")
}
return nil
}
示例8: Tbsv
/*
Solution of a triangular and banded set of equations.
Tbsv(A, X, uplo=PLower, trans=PNoTrans, diag=PNonDiag, n=A.Cols,
k=max(0,A.Rows-1), ldA=A.size[0], incx=1, offsetA=0, offsetx=0)
PURPOSE
X := A^{-1}*X, if trans is PNoTrans
X := A^{-T}*X, if trans is PTrans
X := A^{-H}*X, if trans is PConjTrans
A is banded triangular of order n and with bandwidth k.
ARGUMENTS
A float or complex m*k matrix.
X float or complex k*1 matrix. Must have the same type as A.
OPTIONS
uplo PLower or PUpper
trans PNoTrans, PTrans or PConjTrans
diag PNoNUnit or PUnit
n nonnegative integer. If negative, the default value is used.
k nonnegative integer. If negative, the default value is used.
ldA nonnegative integer. ldA >= 1+k.
If zero the default value is used.
incx nonzero integer
offsetA nonnegative integer
offsetx nonnegative integer;
*/
func Tbsv(A, X matrix.Matrix, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
if !matrix.EqualTypes(A, X) {
err = errors.New("Parameters not of same type")
return
}
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, ftbsv, X, nil, A, params)
if err != nil {
return
}
if ind.N == 0 {
return
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Aa := A.FloatArray()
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
diag := linalg.ParamString(params.Diag)
dtbsv(uplo, trans, diag, ind.N, ind.K,
Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX)
case *matrix.ComplexMatrix:
return errors.New("Not implemented yet for complx.Matrix")
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例9: TrsmFloat
// See function Trsm.
func TrsmFloat(A, B *matrix.FloatMatrix, alpha float64, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, ftrsm, A, B, nil, params)
if err != nil {
return
}
if ind.N == 0 || ind.M == 0 {
return
}
Aa := A.FloatArray()
Ba := B.FloatArray()
uplo := linalg.ParamString(params.Uplo)
transA := linalg.ParamString(params.TransA)
side := linalg.ParamString(params.Side)
diag := linalg.ParamString(params.Diag)
dtrsm(side, uplo, transA, diag, ind.M, ind.N, alpha,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
return
}
示例10: Potrs
/*
Solves a real symmetric or complex Hermitian positive definite set
of linear equations, given the Cholesky factorization computed by
potrf() or posv().
Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols,
ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
PURPOSE
Solves
A*X = B
where A is n by n, real symmetric or complex Hermitian and positive definite,
and B is n by nrhs. On entry, A contains the Cholesky factor, as
returned by Posv() or Potrf(). On exit B is replaced by the solution X.
ARGUMENTS
A float or complex matrix
B float or complex matrix. Must have the same type as A.
OPTIONS
uplo PLower or PUpper
n nonnegative integer. If negative, the default value is used.
nrhs nonnegative integer. If negative, the default value is used.
ldA positive integer. ldA >= max(1,n). If zero, the default
value is used.
ldB positive integer. ldB >= max(1,n). If zero, the default
value is used.
offsetA nonnegative integer
offsetB nonnegative integer;
*/
func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.Nrhs < 0 {
ind.Nrhs = B.Cols()
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("lda")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.LDb < max(1, ind.N) {
return errors.New("ldb")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("sizeA")
}
if ind.OffsetB < 0 {
return errors.New("offsetB")
}
if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("sizeB")
}
if !matrix.EqualTypes(A, B) {
return errors.New("types")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
uplo := linalg.ParamString(pars.Uplo)
info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa,
Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
return errors.New("ComplexMatrx: not implemented yet")
}
if info != 0 {
return errors.New("Potrs failed")
}
return nil
}
示例11: Gemm
/*
General matrix-matrix product. (L3)
PURPOSE
Computes
C := alpha*A*B + beta*C if transA = PNoTrans and transB = PNoTrans.
C := alpha*A^T*B + beta*C if transA = PTrans and transB = PNoTrans.
C := alpha*A^H*B + beta*C if transA = PConjTrans and transB = PNoTrans.
C := alpha*A*B^T + beta*C if transA = PNoTrans and transB = PTrans.
C := alpha*A^T*B^T + beta*C if transA = PTrans and transB = PTrans.
C := alpha*A^H*B^T + beta*C if transA = PConjTrans and transB = PTrans.
C := alpha*A*B^H + beta*C if transA = PNoTrans and transB = PConjTrans.
C := alpha*A^T*B^H + beta*C if transA = PTrans and transB = PConjTrans.
C := alpha*A^H*B^H + beta*C if transA = PConjTrans and transB = PConjTrans.
The number of rows of the matrix product is m. The number of columns is n.
The inner dimension is k. If k=0, this reduces to C := beta*C.
ARGUMENTS
A float or complex matrix, m*k
B float or complex matrix, k*n
C float or complex matrix, m*n
alpha number (float or complex singleton matrix)
beta number (float or complex singleton matrix)
OPTIONS
transA PNoTrans, PTrans or PConjTrans
transB PNoTrans, PTrans or PConjTrans
m integer. If negative, the default value is used. The default value is
m = A.Rows of if transA != PNoTrans m = A.Cols.
n integer. If negative, the default value is used. The default value is
n = (transB == PNoTrans) ? B.Cols : B.Rows.
k integer. If negative, the default value is used. The default value is
k=A.Cols or if transA != PNoTrans) k = A.Rows, transA=PNoTrans.
If the default value is used it should also be equal to
(transB == PNoTrans) ? B.Rows : B.Cols.
ldA nonnegative integer. ldA >= max(1,m) of if transA != NoTrans max(1,k).
If zero, the default value is used.
ldB nonnegative integer. ldB >= max(1,k) or if transB != NoTrans max(1,n).
If zero, the default value is used.
ldC nonnegative integer. ldC >= max(1,m).
If zero, the default value is used.
offsetA nonnegative integer
offsetB nonnegative integer
offsetC nonnegative integer;
*/
func Gemm(A, B, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fgemm, A, B, C, params)
if err != nil {
return
}
if ind.M == 0 || ind.N == 0 {
return
}
if !matrix.EqualTypes(A, B, C) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
Ca := C.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
transB := linalg.ParamString(params.TransB)
transA := linalg.ParamString(params.TransA)
dgemm(transA, transB, ind.M, ind.N, ind.K, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
Ca[ind.OffsetC:], ind.LDc)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ba := B.ComplexArray()
Ca := C.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a number")
}
bval := beta.Complex()
if cmplx.IsNaN(bval) {
return errors.New("beta not a number")
}
transB := linalg.ParamString(params.TransB)
transA := linalg.ParamString(params.TransA)
zgemm(transA, transB, ind.M, ind.N, ind.K, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
Ca[ind.OffsetC:], ind.LDc)
default:
return errors.New("Unknown type, not implemented")
}
//.........這裏部分代碼省略.........
示例12: Herk
/*
Rank-k update of symmetric matrix. (L3)
Herk(A, C, alpha, beta, uplo=PLower, trans=PNoTrans, n=-1,
k=-1, ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetB=0)
Computes
C := alpha*A*A^T + beta*C, if trans is PNoTrans
C := alpha*A^T*A + beta*C, if trans is PTrans
C is symmetric (real or complex) of order n. The inner dimension of the matrix
product is k. If k=0 this is interpreted as C := beta*C.
ARGUMENTS
A float or complex matrix.
C float or complex matrix. Must have the same type as A.
alpha number (float or complex singleton matrix). Complex alpha is only
allowed if A is complex.
beta number (float or complex singleton matrix). Complex beta is only
allowed if A is complex.
OPTIONS
uplo PLower or PUpper
trans PNoTrans or PTrans
n integer. If negative, the default value is used.
The default value is n = A.Rows or if trans == PNoTrans n = A.Cols.
k integer. If negative, the default value is used.
The default value is k = A.Cols, or if trans == PNoTrans k = A.Rows.
ldA nonnegative integer.
ldA >= max(1,n) or if trans != PNoTrans ldA >= max(1,k).
If zero, the default value is used.
ldC nonnegative integer. ldC >= max(1,n).
If zero, the default value is used.
offsetA nonnegative integer
offsetC nonnegative integer;
*/
func Herk(A, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fsyrk, A, nil, C, params)
if e != nil || err != nil {
return
}
if !matrix.EqualTypes(A, C) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ca := C.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
dsyrk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
Ca[ind.OffsetC:], ind.LDc)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ca := C.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a real or complex number")
}
bval := beta.Float()
if math.IsNaN(bval) {
return errors.New("beta not a real number")
}
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
zherk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
Ca[ind.OffsetC:], ind.LDc)
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例13: Hbmv
/*
Matrix-vector product with a real symmetric or complex hermitian band matrix.
Computes with A real symmetric and banded of order n and with bandwidth k.
Y := alpha*A*X + beta*Y
ARGUMENTS
A float or complex n*n matrix
X float or complex n*1 matrix
Y float or complex n*1 matrix
alpha number (float or complex singleton matrix)
beta number (float or complex singleton matrix)
OPTIONS
uplo PLower or PUpper
n integer. If negative, the default value is used.
k integer. If negative, the default value is used.
The default value is k = max(0,A.Rows()-1).
ldA nonnegative integer. ldA >= k+1.
If zero, the default vaule is used.
incx nonzero integer
incy nonzero integer
offsetA nonnegative integer
offsetx nonnegative integer
offsety nonnegative integer
*/
func Hbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, fsbmv, X, Y, A, params)
if err != nil {
return
}
if ind.N == 0 {
return
}
if !matrix.EqualTypes(A, X, Y) {
return errors.New("Parameters not of same type")
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := Y.FloatArray()
Aa := A.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
dsbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
Ya := Y.ComplexArray()
Aa := A.ComplexArray()
aval := alpha.Complex()
bval := beta.Complex()
uplo := linalg.ParamString(params.Uplo)
zhbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)
//zhbmv(uplo, ind.N, aval, Aa[ind.OffsetA:], ind.LDa,
// Xa[ind.OffsetX:], ind.IncX,
// bval, Ya[ind.OffsetY:], ind.IncY)
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例14: GesvdComplex
func GesvdComplex(A, S, U, Vt *matrix.ComplexMatrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
err = checkGesvd(ind, pars, A, S, U, Vt)
if err != nil {
return err
}
if ind.M == 0 || ind.N == 0 {
return nil
}
return errors.New("GesvdComplex not implemented yet")
}
示例15: Trsm
/*
Solution of a triangular system of equations with multiple righthand sides. (L3)
Trsm(A, B, alpha, side=PLeft, uplo=PLower, transA=PNoTrans, diag=PNonUnit,
m=-1, n=-1, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
Computes
B := alpha*A^{-1}*B if transA is PNoTrans and side = PLeft
B := alpha*B*A^{-1} if transA is PNoTrans and side = PRight
B := alpha*A^{-T}*B if transA is PTrans and side = PLeft
B := alpha*B*A^{-T} if transA is PTrans and side = PRight
B := alpha*A^{-H}*B if transA is PConjTrans and side = PLeft
B := alpha*B*A^{-H} if transA is PConjTrans and side = PRight
B is m by n and A is triangular. The code does not verify whether A is nonsingular.
ARGUMENTS
A float or complex matrix.
B float or complex matrix. Must have the same type as A.
alpha number (float or complex). Complex alpha is only
allowed if A is complex.
OPTIONS
side PLeft or PRight
uplo PLower or PUpper
transA PNoTrans or PTrans
diag PNonUnit or PUnit
m integer. If negative, the default value is used.
The default value is m = A.Rows or if side == PRight m = B.Rows
If the default value is used and side is PLeft, m must be equal to A.Cols.
n integer. If negative, the default value is used.
The default value is n = B.Cols or if side )= PRight n = A.Rows.
If the default value is used and side is PRight, n must be equal to A.Cols.
ldA nonnegative integer.
ldA >= max(1,m) of if side == PRight lda >= max(1,n).
If zero, the default value is used.
ldB nonnegative integer. ldB >= max(1,m).
If zero, the default value is used.
offsetA nonnegative integer
offsetB nonnegative integer
*/
func Trsm(A, B matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, ftrsm, A, B, nil, params)
if err != nil {
return
}
if !matrix.EqualTypes(A, B) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
aval := alpha.Float()
if math.IsNaN(aval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
transA := linalg.ParamString(params.TransA)
side := linalg.ParamString(params.Side)
diag := linalg.ParamString(params.Diag)
dtrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ba := B.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a number")
}
uplo := linalg.ParamString(params.Uplo)
transA := linalg.ParamString(params.TransA)
side := linalg.ParamString(params.Side)
diag := linalg.ParamString(params.Diag)
ztrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
default:
return errors.New("Unknown type, not implemented")
}
return
}