當前位置: 首頁>>代碼示例>>Golang>>正文


Golang sets.FloatMatrixSet類代碼示例

本文整理匯總了Golang中github.com/hrautila/cvx/sets.FloatMatrixSet的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrixSet類的具體用法?Golang FloatMatrixSet怎麽用?Golang FloatMatrixSet使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了FloatMatrixSet類的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: AddScaleVar

// Add or update scaling matrix set to checkpoint variables.
func AddScaleVar(w *sets.FloatMatrixSet) {
	if !active {
		return
	}
	// add all matrices of scale set to variable table
	for _, key := range w.Keys() {
		mset := w.At(key)
		for k, m := range mset {
			name := fmt.Sprintf("%s.%d", key, k)
			variables[name] = &dataPoint{vvar: &mVariable{m}}
		}
	}
}
開發者ID:hrautila,項目名稱:cvx,代碼行數:14,代碼來源:ckp.go

示例2: cpl_solver


//.........這裏部分代碼省略.........
	checkpnt.AddVerifiable("dx0", dx0)
	checkpnt.AddVerifiable("rx0", rx0)
	checkpnt.AddVerifiable("y", y)
	checkpnt.AddVerifiable("dy", dy)

	W0 := sets.NewFloatSet("d", "di", "dnl", "dnli", "v", "r", "rti", "beta")
	W0.Set("dnl", matrix.FloatZeros(mnl, 1))
	W0.Set("dnli", matrix.FloatZeros(mnl, 1))
	W0.Set("d", matrix.FloatZeros(dims.At("l")[0], 1))
	W0.Set("di", matrix.FloatZeros(dims.At("l")[0], 1))
	W0.Set("beta", matrix.FloatZeros(len(dims.At("q")), 1))
	for _, n := range dims.At("q") {
		W0.Append("v", matrix.FloatZeros(n, 1))
	}
	for _, n := range dims.At("s") {
		W0.Append("r", matrix.FloatZeros(n, n))
		W0.Append("rti", matrix.FloatZeros(n, n))
	}
	lmbda0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1)
	lmbdasq0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1)

	var f MatrixVariable = nil
	var Df MatrixVarDf = nil
	var H MatrixVarH = nil

	var ws3, wz3, wz2l, wz2nl *matrix.FloatMatrix
	var ws, wz, wz2, ws2 *matrix.FloatMatrix
	var wx, wx2, wy, wy2 MatrixVariable
	var gap, gap0, theta1, theta2, theta3, ts, tz, phi, phi0, mu, sigma, eta float64
	var resx, resy, reszl, resznl, pcost, dcost, dres, pres, relgap float64
	var resx0, resznl0, dres0, pres0 float64
	var dsdz, dsdz0, step, step0, dphi, dphi0, sigma0, eta0 float64
	var newresx, newresznl, newgap, newphi float64
	var W *sets.FloatMatrixSet
	var f3 KKTFuncVar

	checkpnt.AddFloatVar("gap", &gap)
	checkpnt.AddFloatVar("pcost", &pcost)
	checkpnt.AddFloatVar("dcost", &dcost)
	checkpnt.AddFloatVar("pres", &pres)
	checkpnt.AddFloatVar("dres", &dres)
	checkpnt.AddFloatVar("relgap", &relgap)
	checkpnt.AddFloatVar("step", &step)
	checkpnt.AddFloatVar("dsdz", &dsdz)
	checkpnt.AddFloatVar("resx", &resx)
	checkpnt.AddFloatVar("resy", &resy)
	checkpnt.AddFloatVar("reszl", &reszl)
	checkpnt.AddFloatVar("resznl", &resznl)

	// Declare fDf and fH here, they bind to Df and H as they are already declared.
	// ??really??

	var fDf func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error = nil
	var fH func(u, v MatrixVariable, alpha, beta float64) error = nil

	relaxed_iters := 0
	for iters := 0; iters <= maxIter+1; iters++ {
		checkpnt.MajorNext()
		checkpnt.Check("loopstart", 10)

		checkpnt.MinorPush(10)
		if refinement != 0 || solopts.Debug {
			f, Df, H, err = F.F2(x, matrix.FloatVector(z.FloatArray()[:mnl]))
			fDf = func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error {
				return Df.Df(u, v, alpha, beta, trans)
			}
開發者ID:hrautila,項目名稱:cvx,代碼行數:67,代碼來源:cpl.go

示例3: Sdp

// Solves a pair of primal and dual SDPs
//
//        minimize    c'*x
//        subject to  Gl*x + sl = hl
//                    mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1
//                    A*x = b
//                    sl >= 0,  ss[k] >= 0, k = 0, ..., N-1
//
//        maximize    -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y
//        subject to  Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0
//                    zl >= 0,  zs[k] >= 0, k = 0, ..., N-1.
//
// The inequalities sl >= 0 and zl >= 0 are elementwise vector
// inequalities.  The inequalities ss[k] >= 0, zs[k] >= 0 are matrix
// inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be
// positive semidefinite.  mat(Gs[k]*x) is the symmetric matrix X with
// X[:] = Gs[k]*x.  For a symmetric matrix, zs[k], vec(zs[k]) is the
// vector zs[k][:].
//
func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *sets.FloatMatrixSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gsset := Ghs.At("Gs")
	ms := make([]int, 0)
	for i, Gs := range Gsset {
		if Gs.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n))
			return
		}
		sz := int(math.Sqrt(float64(Gs.Rows())))
		if Gs.Rows() != sz*sz {
			err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i))
			return
		}
		ms = append(ms, sz)
	}

	hsset := Ghs.At("hs")
	if len(Gsset) != len(hsset) {
		err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset)))
		return
	}
	for i, hs := range hsset {
		if !hs.SizeMatch(ms[i], ms[i]) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)",
				i, hs.Rows(), hs.Cols(), ms[i], ms[i])
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("s", ms)
	N := dims.Sum("l") + dims.SumSquared("s")

	// Map hs matrices to h vector
	h := matrix.FloatZeros(N, 1)
	h.SetIndexesFromArray(hl.FloatArray()[:ml], matrix.MakeIndexSet(0, ml, 1)...)
	ind := ml
	for k, hs := range hsset {
		h.SetIndexesFromArray(hs.FloatArray(), matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1)...)
		ind += ms[k] * ms[k]
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:cvx,代碼行數:101,代碼來源:solvers.go

示例4: Socp

// Solves a pair of primal and dual SOCPs
//
//     minimize    c'*x
//     subject to  Gl*x + sl = hl
//                 Gq[k]*x + sq[k] = hq[k],  k = 0, ..., N-1
//                 A*x = b
//                 sl >= 0,
//                 sq[k] >= 0, k = 0, ..., N-1
//
//     maximize   -hl'*z - sum_k hq[k]'*zq[k] - b'*y
//     subject to  Gl'*zl + sum_k Gq[k]'*zq[k] + A'*y + c = 0
//                 zl >= 0,  zq[k] >= 0, k = 0, ..., N-1.
//
// The inequalities sl >= 0 and zl >= 0 are elementwise vector
// inequalities.  The inequalities sq[k] >= 0, zq[k] >= 0 are second
// order cone inequalities, i.e., equivalent to
//
//     sq[k][0] >= || sq[k][1:] ||_2,  zq[k][0] >= || zq[k][1:] ||_2.
//
func Socp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghq *sets.FloatMatrixSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gqset := Ghq.At("Gq")
	mq := make([]int, 0)
	for i, Gq := range Gqset {
		if Gq.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gq' must be list of matrices with %d columns", n))
			return
		}
		if Gq.Rows() == 0 {
			err = errors.New(fmt.Sprintf("the number of rows of 'Gq[%d]' is zero", i))
			return
		}
		mq = append(mq, Gq.Rows())
	}
	hqset := Ghq.At("hq")
	if len(Gqset) != len(hqset) {
		err = errors.New(fmt.Sprintf("'hq' must be a list of %d matrices", len(Gqset)))
		return
	}
	for i, hq := range hqset {
		if !hq.SizeMatch(Gqset[i].Rows(), 1) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,1)",
				i, hq.Rows(), hq.Cols(), Gqset[i].Rows())
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("q", mq)
	//N := dims.Sum("l", "q")

	hargs := make([]*matrix.FloatMatrix, 0, len(hqset)+1)
	hargs = append(hargs, hl)
	hargs = append(hargs, hqset...)
	h, indh := matrix.FloatMatrixStacked(matrix.StackDown, hargs...)

	Gargs := make([]*matrix.FloatMatrix, 0, len(Gqset)+1)
	Gargs = append(Gargs, Gl)
	Gargs = append(Gargs, Gqset...)
	G, indg := matrix.FloatMatrixStacked(matrix.StackDown, Gargs...)
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:cvx,代碼行數:101,代碼來源:solvers.go

示例5: scale

/*
   Applies Nesterov-Todd scaling or its inverse.

   Computes

        x := W*x        (trans is false 'N', inverse = false 'N')
        x := W^T*x      (trans is true  'T', inverse = false 'N')
        x := W^{-1}*x   (trans is false 'N', inverse = true  'T')
        x := W^{-T}*x   (trans is true  'T', inverse = true  'T').

   x is a dense float matrix.

   W is a MatrixSet with entries:

   - W['dnl']: positive vector
   - W['dnli']: componentwise inverse of W['dnl']
   - W['d']: positive vector
   - W['di']: componentwise inverse of W['d']
   - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
   - W['beta']: list of positive numbers
   - W['r']: list of square matrices
   - W['rti']: list of square matrices.  rti[k] is the inverse transpose
     of r[k].

   The 'dnl' and 'dnli' entries are optional, and only present when the
   function is called from the nonlinear solver.
*/
func scale(x *matrix.FloatMatrix, W *sets.FloatMatrixSet, trans, inverse bool) (err error) {
	/*DEBUGGED*/
	var wl []*matrix.FloatMatrix
	var w *matrix.FloatMatrix
	ind := 0
	err = nil

	// var minor int = 0
	//if ! checkpnt.MinorEmpty() {
	//	minor = checkpnt.MinorTop()
	//}

	//fmt.Printf("\n%d.%04d scaling x=\n%v\n", checkpnt.Major(), minor, x.ToString("%.17f"))

	// Scaling for nonlinear component xk is xk := dnl .* xk; inverse
	// scaling is xk ./ dnl = dnli .* xk, where dnl = W['dnl'],
	// dnli = W['dnli'].

	if wl = W.At("dnl"); wl != nil {
		if inverse {
			w = W.At("dnli")[0]
		} else {
			w = W.At("dnl")[0]
		}
		for k := 0; k < x.Cols(); k++ {
			err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
				&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k * x.Rows()})
			if err != nil {
				//fmt.Printf("1. TbmvFloat: %v\n", err)
				return
			}
		}
		ind += w.Rows()
	}

	//if ! checkpnt.MinorEmpty() {
	//    checkpnt.Check("000scale", minor)
	//}

	// Scaling for linear 'l' component xk is xk := d .* xk; inverse
	// scaling is xk ./ d = di .* xk, where d = W['d'], di = W['di'].

	if inverse {
		w = W.At("di")[0]
	} else {
		w = W.At("d")[0]
	}

	for k := 0; k < x.Cols(); k++ {
		err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
			&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k*x.Rows() + ind})
		if err != nil {
			//fmt.Printf("2. TbmvFloat: %v\n", err)
			return
		}
	}
	ind += w.Rows()

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("010scale", minor)
	//}

	// Scaling for 'q' component is
	//
	//    xk := beta * (2*v*v' - J) * xk
	//        = beta * (2*v*(xk'*v)' - J*xk)
	//
	// where beta = W['beta'][k], v = W['v'][k], J = [1, 0; 0, -I].
	//
	//Inverse scaling is
	//
	//    xk := 1/beta * (2*J*v*v'*J - J) * xk
	//        = 1/beta * (-J) * (2*v*((-J*xk)'*v)' + xk).
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:cvx,代碼行數:101,代碼來源:misc.go

示例6: updateScaling

func updateScaling(W *sets.FloatMatrixSet, lmbda, s, z *matrix.FloatMatrix) (err error) {
	err = nil
	var stmp, ztmp *matrix.FloatMatrix
	/*
	   Nonlinear and 'l' blocks

	      d :=  d .* sqrt( s ./ z )
	      lmbda := lmbda .* sqrt(s) .* sqrt(z)
	*/
	mnl := 0
	dnlset := W.At("dnl")
	dnliset := W.At("dnli")
	dset := W.At("d")
	diset := W.At("di")
	beta := W.At("beta")[0]
	if dnlset != nil && dnlset[0].NumElements() > 0 {
		mnl = dnlset[0].NumElements()
	}
	ml := dset[0].NumElements()
	m := mnl + ml
	//fmt.Printf("ml=%d, mnl=%d, m=%d'n", ml, mnl, m)

	stmp = matrix.FloatVector(s.FloatArray()[:m])
	stmp.Apply(math.Sqrt)
	s.SetIndexesFromArray(stmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...)

	ztmp = matrix.FloatVector(z.FloatArray()[:m])
	ztmp.Apply(math.Sqrt)
	z.SetIndexesFromArray(ztmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...)

	// d := d .* s .* z
	if len(dnlset) > 0 {
		blas.TbmvFloat(s, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
		blas.TbsvFloat(z, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
		//dnliset[0].Apply(dnlset[0], func(a float64)float64 { return 1.0/a})
		//--dnliset[0] = matrix.Inv(dnlset[0])
		matrix.Set(dnliset[0], dnlset[0])
		dnliset[0].Inv()
	}
	blas.TbmvFloat(s, dset[0], &la_.IOpt{"n", ml},
		&la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl})
	blas.TbsvFloat(z, dset[0], &la_.IOpt{"n", ml},
		&la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl})
	//diset[0].Apply(dset[0], func(a float64)float64 { return 1.0/a})
	//--diset[0] = matrix.Inv(dset[0])
	matrix.Set(diset[0], dset[0])
	diset[0].Inv()

	// lmbda := s .* z
	blas.CopyFloat(s, lmbda, &la_.IOpt{"n", m})
	blas.TbmvFloat(z, lmbda, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})

	// 'q' blocks.
	// Let st and zt be the new variables in the old scaling:
	//
	//     st = s_k,   zt = z_k
	//
	// and a = sqrt(st' * J * st),  b = sqrt(zt' * J * zt).
	//
	// 1. Compute the hyperbolic Householder transformation 2*q*q' - J
	//    that maps st/a to zt/b.
	//
	//        c = sqrt( (1 + st'*zt/(a*b)) / 2 )
	//        q = (st/a + J*zt/b) / (2*c).
	//
	//    The new scaling point is
	//
	//        wk := betak * sqrt(a/b) * (2*v[k]*v[k]' - J) * q
	//
	//    with betak = W['beta'][k].
	//
	// 3. The scaled variable:
	//
	//        lambda_k0 = sqrt(a*b) * c
	//        lambda_k1 = sqrt(a*b) * ( (2vk*vk' - J) * (-d*q + u/2) )_1
	//
	//    where
	//
	//        u = st/a - J*zt/b
	//        d = ( vk0 * (vk'*u) + u0/2 ) / (2*vk0 *(vk'*q) - q0 + 1).
	//
	// 4. Update scaling
	//
	//        v[k] := wk^1/2
	//              = 1 / sqrt(2*(wk0 + 1)) * (wk + e).
	//        beta[k] *=  sqrt(a/b)

	ind := m
	for k, v := range W.At("v") {
		m = v.NumElements()

		// ln = sqrt( lambda_k' * J * lambda_k ) !! NOT USED!!
		jnrm2(lmbda, m, ind) // ?? NOT USED ??

		// a = sqrt( sk' * J * sk ) = sqrt( st' * J * st )
		// s := s / a = st / a
		aa := jnrm2(s, m, ind)
		blas.ScalFloat(s, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})

		// b = sqrt( zk' * J * zk ) = sqrt( zt' * J * zt )
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:cvx,代碼行數:101,代碼來源:misc.go

示例7: conelp_solver

func conelp_solver(c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix,
	A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar,
	solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {

	err = nil
	const EXPON = 3
	const STEP = 0.99

	sol = &Solution{Unknown,
		nil,
		0.0, 0.0, 0.0, 0.0, 0.0,
		0.0, 0.0, 0.0, 0.0, 0.0, 0}

	var refinement int

	if solopts.Refinement > 0 {
		refinement = solopts.Refinement
	} else {
		refinement = 0
		if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
			refinement = 1
		}
	}
	feasTolerance := FEASTOL
	absTolerance := ABSTOL
	relTolerance := RELTOL
	maxIter := MAXITERS
	if solopts.FeasTol > 0.0 {
		feasTolerance = solopts.FeasTol
	}
	if solopts.AbsTol > 0.0 {
		absTolerance = solopts.AbsTol
	}
	if solopts.RelTol > 0.0 {
		relTolerance = solopts.RelTol
	}
	if solopts.MaxIter > 0 {
		maxIter = solopts.MaxIter
	}
	if err = checkConeLpDimensions(dims); err != nil {
		return
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	//cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
	indq := make([]int, 0)
	indq = append(indq, dims.At("l")[0])
	for _, k := range dims.At("q") {
		indq = append(indq, indq[len(indq)-1]+k)
	}

	// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
	inds := make([]int, 0)
	inds = append(inds, indq[len(indq)-1])
	for _, k := range dims.At("s") {
		inds = append(inds, inds[len(inds)-1]+k*k)
	}

	Gf := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return G.Gf(x, y, alpha, beta, trans)
	}

	Af := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return A.Af(x, y, alpha, beta, trans)
	}

	// kktsolver(W) returns a routine for solving 3x3 block KKT system
	//
	//     [ 0   A'  G'*W^{-1} ] [ ux ]   [ bx ]
	//     [ A   0   0         ] [ uy ] = [ by ].
	//     [ G   0   -W'       ] [ uz ]   [ bz ]

	if kktsolver == nil {
		err = errors.New("nil kktsolver not allowed.")
		return
	}

	// res() evaluates residual in 5x5 block KKT system
	//
	//     [ vx   ]    [ 0         ]   [ 0   A'  G'  c ] [ ux        ]
	//     [ vy   ]    [ 0         ]   [-A   0   0   b ] [ uy        ]
	//     [ vz   ] += [ W'*us     ] - [-G   0   0   h ] [ W^{-1}*uz ]
	//     [ vtau ]    [ dg*ukappa ]   [-c' -b' -h'  0 ] [ utau/dg   ]
	//
	//           vs += lmbda o (dz + ds)
	//       vkappa += lmbdg * (dtau + dkappa).
	ws3 := matrix.FloatZeros(cdim, 1)
	wz3 := matrix.FloatZeros(cdim, 1)
	checkpnt.AddMatrixVar("ws3", ws3)
	checkpnt.AddMatrixVar("wz3", wz3)

	//
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:cvx,代碼行數:101,代碼來源:conelp.go


注:本文中的github.com/hrautila/cvx/sets.FloatMatrixSet類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。