本文整理匯總了Golang中github.com/hrautila/cmat.FloatMatrix.Column方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrix.Column方法的具體用法?Golang FloatMatrix.Column怎麽用?Golang FloatMatrix.Column使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/hrautila/cmat.FloatMatrix
的用法示例。
在下文中一共展示了FloatMatrix.Column方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: SolveDiag
/*
* Compute
* B = B*diag(D).-1 flags & RIGHT == true
* B = diag(D).-1*B flags & LEFT == true
*
* If flags is LEFT (RIGHT) then element-wise divides columns (rows) of B with vector D.
*
* Arguments:
* B M-by-N matrix if flags&RIGHT == true or N-by-M matrix if flags&LEFT == true
*
* D N element column or row vector or N-by-N matrix
*
* flags Indicator bits, LEFT or RIGHT
*/
func SolveDiag(B, D *cmat.FloatMatrix, flags int, confs ...*gomas.Config) *gomas.Error {
var c, d0 cmat.FloatMatrix
var d *cmat.FloatMatrix
conf := gomas.CurrentConf(confs...)
d = D
if !D.IsVector() {
d0.Diag(D)
d = &d0
}
dn := d0.Len()
br, bc := B.Size()
switch flags & (gomas.LEFT | gomas.RIGHT) {
case gomas.LEFT:
if br != dn {
return gomas.NewError(gomas.ESIZE, "SolveDiag")
}
// scale rows;
for k := 0; k < dn; k++ {
c.Row(B, k)
blasd.InvScale(&c, d.GetAt(k), conf)
}
case gomas.RIGHT:
if bc != dn {
return gomas.NewError(gomas.ESIZE, "SolveDiag")
}
// scale columns
for k := 0; k < dn; k++ {
c.Column(B, k)
blasd.InvScale(&c, d.GetAt(k), conf)
}
}
return nil
}
示例2: trdsecUpdateVecDelta
// Compute the updated rank-1 update vector with precomputed deltas
func trdsecUpdateVecDelta(z, Q, d *cmat.FloatMatrix, rho float64) {
var delta cmat.FloatMatrix
for i := 0; i < d.Len(); i++ {
delta.Column(Q, i)
zk := trdsecUpdateElemDelta(d, &delta, i, rho)
z.SetAt(i, zk)
}
}
示例3: trdsecEigenBuild
// Compute eigenmatrix Q for updated eigenvalues in 'dl'.
func trdsecEigenBuild(Q, z, Q2 *cmat.FloatMatrix) {
var qi, delta cmat.FloatMatrix
for k := 0; k < z.Len(); k++ {
qi.Column(Q, k)
delta.Row(Q2, k)
trdsecEigenVecDelta(&qi, &delta, z)
}
}
示例4: mNorm1
func mNorm1(A *cmat.FloatMatrix) float64 {
var amax float64 = 0.0
var col cmat.FloatMatrix
_, acols := A.Size()
for k := 0; k < acols; k++ {
col.Column(A, k)
cmax := blasd.ASum(&col)
if cmax > amax {
amax = cmax
}
}
return amax
}
示例5: TRDBuild
/*
* Generates the real orthogonal matrix Q which is defined as the product of K elementary
* reflectors of order N embedded in matrix A as returned by TRDReduce().
*
* A On entry tridiagonal reduction as returned by TRDReduce().
* On exit the orthogonal matrix Q.
*
* tau Scalar coefficients of elementary reflectors.
*
* W Workspace
*
* K Number of reflectors , 0 < K < N
*
* flags LOWER or UPPER
*
* confs Optional blocking configuration
*
* If flags has UPPER set then
* Q = H(K)...H(1)H(0) where 0 < K < N-1
*
* If flags has LOWR set then
* Q = H(0)H(1)...H(K) where 0 < K < N-1
*/
func TRDBuild(A, tau, W *cmat.FloatMatrix, K, flags int, confs ...*gomas.Config) *gomas.Error {
var err *gomas.Error = nil
var Qh, tauh cmat.FloatMatrix
var s, d cmat.FloatMatrix
if K > m(A)-1 {
K = m(A) - 1
}
switch flags & (gomas.LOWER | gomas.UPPER) {
case gomas.LOWER:
// Shift Q matrix embedded in A right and fill first column
// unit column vector
for j := m(A) - 1; j > 0; j-- {
s.SubMatrix(A, j, j-1, m(A)-j, 1)
d.SubMatrix(A, j, j, m(A)-j, 1)
blasd.Copy(&d, &s)
A.Set(0, j, 0.0)
}
// zero first column and set first entry to one
d.Column(A, 0)
blasd.Scale(&d, 0.0)
d.Set(0, 0, 1.0)
Qh.SubMatrix(A, 1, 1, m(A)-1, m(A)-1)
tauh.SubMatrix(tau, 0, 0, m(A)-1, 1)
err = QRBuild(&Qh, &tauh, W, K, confs...)
case gomas.UPPER:
// Shift Q matrix embedded in A left and fill last column
// unit column vector
for j := 1; j < m(A); j++ {
s.SubMatrix(A, 0, j, j, 1)
d.SubMatrix(A, 0, j-1, j, 1)
blasd.Copy(&d, &s)
A.Set(-1, j-1, 0.0)
}
// zero last column and set last entry to one
d.Column(A, m(A)-1)
blasd.Scale(&d, 0.0)
d.Set(-1, 0, 1.0)
Qh.SubMatrix(A, 0, 0, m(A)-1, m(A)-1)
tauh.SubMatrix(tau, 0, 0, m(A)-1, 1)
err = QLBuild(&Qh, &tauh, W, K, confs...)
}
if err != nil {
err.Update("TRDBuild")
}
return err
}
示例6: sortEigenVec
func sortEigenVec(D, U, V, C *cmat.FloatMatrix, updown int) {
var sD, m0, m1 cmat.FloatMatrix
N := D.Len()
for k := 0; k < N-1; k++ {
sD.SubVector(D, k, N-k)
pk := vecMinMax(&sD, -updown)
if pk != 0 {
t0 := D.GetAt(k)
D.SetAt(k, D.GetAt(pk+k))
D.SetAt(k+pk, t0)
if U != nil {
m0.Column(U, k)
m1.Column(U, k+pk)
blasd.Swap(&m1, &m0)
}
if V != nil {
m0.Row(V, k)
m1.Row(V, k+pk)
blasd.Swap(&m1, &m0)
}
if C != nil {
m0.Column(C, k)
m1.Column(C, k+pk)
blasd.Swap(&m1, &m0)
}
}
}
}
示例7: trdsecEigenBuildInplace
func trdsecEigenBuildInplace(Q, z *cmat.FloatMatrix) {
var QTL, QBR, Q00, q11, q12, q21, Q22, qi cmat.FloatMatrix
var zk0, zk1, dk0, dk1 float64
util.Partition2x2(
&QTL, nil,
nil, &QBR /**/, Q, 0, 0, util.PTOPLEFT)
for m(&QBR) > 0 {
util.Repartition2x2to3x3(&QTL,
&Q00, nil, nil,
nil, &q11, &q12,
nil, &q21, &Q22 /**/, Q, 1, util.PBOTTOMRIGHT)
//---------------------------------------------------------------
k := m(&Q00)
zk0 = z.GetAt(k)
dk0 = q11.Get(0, 0)
q11.Set(0, 0, zk0/dk0)
for i := 0; i < q12.Len(); i++ {
zk1 = z.GetAt(k + i + 1)
dk0 = q12.GetAt(i)
dk1 = q21.GetAt(i)
q12.SetAt(i, zk0/dk1)
q21.SetAt(i, zk1/dk0)
}
//---------------------------------------------------------------
util.Continue3x3to2x2(
&QTL, nil,
nil, &QBR /**/, &Q00, &q11, &Q22 /**/, Q, util.PBOTTOMRIGHT)
}
// scale column eigenvectors
for k := 0; k < z.Len(); k++ {
qi.Column(Q, k)
t := blasd.Nrm2(&qi)
blasd.InvScale(&qi, t)
}
}
示例8: BDBuild
/*
* Generate one of the orthogonal matrices Q or P.T determined by BDReduce() when
* reducing a real matrix A to bidiagonal form. Q and P.T are defined as products
* elementary reflectors H(i) or G(i) respectively.
*
* Orthogonal matrix Q is generated if flag WANTQ is set. And matrix P respectively
* if flag WANTP is set.
*/
func BDBuild(A, tau, W *cmat.FloatMatrix, K, flags int, confs ...*gomas.Config) *gomas.Error {
var Qh, Ph, tauh, d, s cmat.FloatMatrix
var err *gomas.Error = nil
if m(A) == 0 || n(A) == 0 {
return nil
}
if m(A) > n(A) || (m(A) == n(A) && flags&gomas.LOWER == 0) {
switch flags & (gomas.WANTQ | gomas.WANTP) {
case gomas.WANTQ:
tauh.SubMatrix(tau, 0, 0, n(A), 1)
err = QRBuild(A, &tauh, W, K, confs...)
case gomas.WANTP:
// Shift P matrix embedded in A down and fill first column and row
// to unit vector
for j := n(A) - 1; j > 0; j-- {
s.SubMatrix(A, j-1, j, 1, n(A)-j)
d.SubMatrix(A, j, j, 1, n(A)-j)
blasd.Copy(&d, &s)
A.Set(j, 0, 0.0)
}
// zero first row and set first entry to one
d.Row(A, 0)
blasd.Scale(&d, 0.0)
d.Set(0, 0, 1.0)
Ph.SubMatrix(A, 1, 1, n(A)-1, n(A)-1)
tauh.SubMatrix(tau, 0, 0, n(A)-1, 1)
if K > n(A)-1 {
K = n(A) - 1
}
err = LQBuild(&Ph, &tauh, W, K, confs...)
}
} else {
switch flags & (gomas.WANTQ | gomas.WANTP) {
case gomas.WANTQ:
// Shift Q matrix embedded in A right and fill first column and row
// to unit vector
for j := m(A) - 1; j > 0; j-- {
s.SubMatrix(A, j, j-1, m(A)-j, 1)
d.SubMatrix(A, j, j, m(A)-j, 1)
blasd.Copy(&d, &s)
A.Set(0, j, 0.0)
}
// zero first column and set first entry to one
d.Column(A, 0)
blasd.Scale(&d, 0.0)
d.Set(0, 0, 1.0)
Qh.SubMatrix(A, 1, 1, m(A)-1, m(A)-1)
tauh.SubMatrix(tau, 0, 0, m(A)-1, 1)
if K > m(A)-1 {
K = m(A) - 1
}
err = QRBuild(&Qh, &tauh, W, K, confs...)
case gomas.WANTP:
tauh.SubMatrix(tau, 0, 0, m(A), 1)
err = LQBuild(A, &tauh, W, K, confs...)
}
}
if err != nil {
err.Update("BDBuild")
}
return err
}
示例9: unblockedLUpiv
// unblocked LU decomposition with pivots: FLAME LU variant 3; Left-looking
func unblockedLUpiv(A *cmat.FloatMatrix, p *Pivots, offset int, conf *gomas.Config) *gomas.Error {
var err *gomas.Error = nil
var ATL, ATR, ABL, ABR cmat.FloatMatrix
var A00, a01, A02, a10, a11, a12, A20, a21, A22 cmat.FloatMatrix
var AL, AR, A0, a1, A2, aB1, AB0 cmat.FloatMatrix
var pT, pB, p0, p1, p2 Pivots
err = nil
util.Partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, util.PTOPLEFT)
util.Partition1x2(
&AL, &AR, A, 0, util.PLEFT)
partitionPivot2x1(
&pT,
&pB, *p, 0, util.PTOP)
for m(&ATL) < m(A) && n(&ATL) < n(A) {
util.Repartition2x2to3x3(&ATL,
&A00, &a01, &A02,
&a10, &a11, &a12,
&A20, &a21, &A22 /**/, A, 1, util.PBOTTOMRIGHT)
util.Repartition1x2to1x3(&AL,
&A0, &a1, &A2 /**/, A, 1, util.PRIGHT)
repartPivot2x1to3x1(&pT,
&p0, &p1, &p2 /**/, *p, 1, util.PBOTTOM)
// apply previously computed pivots on current column
applyPivots(&a1, p0)
// a01 = trilu(A00) \ a01 (TRSV)
blasd.MVSolveTrm(&a01, &A00, 1.0, gomas.LOWER|gomas.UNIT)
// a11 = a11 - a10 *a01
aval := a11.Get(0, 0) - blasd.Dot(&a10, &a01)
a11.Set(0, 0, aval)
// a21 = a21 -A20*a01
blasd.MVMult(&a21, &A20, &a01, -1.0, 1.0, gomas.NONE)
// pivot index on current column [a11, a21].T
aB1.Column(&ABR, 0)
p1[0] = pivotIndex(&aB1)
// pivots to current column
applyPivots(&aB1, p1)
// a21 = a21 / a11
if aval == 0.0 {
if err == nil {
ij := m(&ATL) + p1[0] - 1
err = gomas.NewError(gomas.ESINGULAR, "DecomposeLU", ij)
}
} else {
blasd.InvScale(&a21, a11.Get(0, 0))
}
// apply pivots to previous columns
AB0.SubMatrix(&ABL, 0, 0)
applyPivots(&AB0, p1)
// scale last pivots to origin matrix row numbers
p1[0] += m(&ATL)
util.Continue3x3to2x2(
&ATL, &ATR,
&ABL, &ABR, &A00, &a11, &A22, A, util.PBOTTOMRIGHT)
util.Continue1x3to1x2(
&AL, &AR, &A0, &a1, A, util.PRIGHT)
contPivot3x1to2x1(
&pT,
&pB, p0, p1, *p, util.PBOTTOM)
}
if n(&ATL) < n(A) {
applyPivots(&ATR, *p)
blasd.SolveTrm(&ATR, &ATL, 1.0, gomas.LEFT|gomas.UNIT|gomas.LOWER, conf)
}
return err
}