當前位置: 首頁>>代碼示例>>Golang>>正文


Golang FloatMatrixSet.At方法代碼示例

本文整理匯總了Golang中github.com/henrylee2cn/algorithm/cvx/sets.FloatMatrixSet.At方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrixSet.At方法的具體用法?Golang FloatMatrixSet.At怎麽用?Golang FloatMatrixSet.At使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/henrylee2cn/algorithm/cvx/sets.FloatMatrixSet的用法示例。


在下文中一共展示了FloatMatrixSet.At方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: AddScaleVar

// Add or update scaling matrix set to checkpoint variables.
func AddScaleVar(w *sets.FloatMatrixSet) {
	if !active {
		return
	}
	// add all matrices of scale set to variable table
	for _, key := range w.Keys() {
		mset := w.At(key)
		for k, m := range mset {
			name := fmt.Sprintf("%s.%d", key, k)
			variables[name] = &dataPoint{vvar: &mVariable{m}}
		}
	}
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:14,代碼來源:ckp.go

示例2: Sdp

// Solves a pair of primal and dual SDPs
//
//        minimize    c'*x
//        subject to  Gl*x + sl = hl
//                    mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1
//                    A*x = b
//                    sl >= 0,  ss[k] >= 0, k = 0, ..., N-1
//
//        maximize    -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y
//        subject to  Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0
//                    zl >= 0,  zs[k] >= 0, k = 0, ..., N-1.
//
// The inequalities sl >= 0 and zl >= 0 are elementwise vector
// inequalities.  The inequalities ss[k] >= 0, zs[k] >= 0 are matrix
// inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be
// positive semidefinite.  mat(Gs[k]*x) is the symmetric matrix X with
// X[:] = Gs[k]*x.  For a symmetric matrix, zs[k], vec(zs[k]) is the
// vector zs[k][:].
//
func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *sets.FloatMatrixSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gsset := Ghs.At("Gs")
	ms := make([]int, 0)
	for i, Gs := range Gsset {
		if Gs.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n))
			return
		}
		sz := int(math.Sqrt(float64(Gs.Rows())))
		if Gs.Rows() != sz*sz {
			err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i))
			return
		}
		ms = append(ms, sz)
	}

	hsset := Ghs.At("hs")
	if len(Gsset) != len(hsset) {
		err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset)))
		return
	}
	for i, hs := range hsset {
		if !hs.SizeMatch(ms[i], ms[i]) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)",
				i, hs.Rows(), hs.Cols(), ms[i], ms[i])
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("s", ms)
	N := dims.Sum("l") + dims.SumSquared("s")

	// Map hs matrices to h vector
	h := matrix.FloatZeros(N, 1)
	h.SetIndexesFromArray(hl.FloatArray()[:ml], matrix.MakeIndexSet(0, ml, 1)...)
	ind := ml
	for k, hs := range hsset {
		h.SetIndexesFromArray(hs.FloatArray(), matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1)...)
		ind += ms[k] * ms[k]
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:solvers.go

示例3: Socp

// Solves a pair of primal and dual SOCPs
//
//     minimize    c'*x
//     subject to  Gl*x + sl = hl
//                 Gq[k]*x + sq[k] = hq[k],  k = 0, ..., N-1
//                 A*x = b
//                 sl >= 0,
//                 sq[k] >= 0, k = 0, ..., N-1
//
//     maximize   -hl'*z - sum_k hq[k]'*zq[k] - b'*y
//     subject to  Gl'*zl + sum_k Gq[k]'*zq[k] + A'*y + c = 0
//                 zl >= 0,  zq[k] >= 0, k = 0, ..., N-1.
//
// The inequalities sl >= 0 and zl >= 0 are elementwise vector
// inequalities.  The inequalities sq[k] >= 0, zq[k] >= 0 are second
// order cone inequalities, i.e., equivalent to
//
//     sq[k][0] >= || sq[k][1:] ||_2,  zq[k][0] >= || zq[k][1:] ||_2.
//
func Socp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghq *sets.FloatMatrixSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gqset := Ghq.At("Gq")
	mq := make([]int, 0)
	for i, Gq := range Gqset {
		if Gq.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gq' must be list of matrices with %d columns", n))
			return
		}
		if Gq.Rows() == 0 {
			err = errors.New(fmt.Sprintf("the number of rows of 'Gq[%d]' is zero", i))
			return
		}
		mq = append(mq, Gq.Rows())
	}
	hqset := Ghq.At("hq")
	if len(Gqset) != len(hqset) {
		err = errors.New(fmt.Sprintf("'hq' must be a list of %d matrices", len(Gqset)))
		return
	}
	for i, hq := range hqset {
		if !hq.SizeMatch(Gqset[i].Rows(), 1) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,1)",
				i, hq.Rows(), hq.Cols(), Gqset[i].Rows())
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("q", mq)
	//N := dims.Sum("l", "q")

	hargs := make([]*matrix.FloatMatrix, 0, len(hqset)+1)
	hargs = append(hargs, hl)
	hargs = append(hargs, hqset...)
	h, indh := matrix.FloatMatrixStacked(matrix.StackDown, hargs...)

	Gargs := make([]*matrix.FloatMatrix, 0, len(Gqset)+1)
	Gargs = append(Gargs, Gl)
	Gargs = append(Gargs, Gqset...)
	G, indg := matrix.FloatMatrixStacked(matrix.StackDown, Gargs...)
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:solvers.go

示例4: cpl_solver


//.........這裏部分代碼省略.........

	if G == nil {
		err = errors.New("'G' must be non-nil MatrixG interface.")
		return
	}
	fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return G.Gf(x, y, alpha, beta, trans)
	}

	// Check A and set defaults if it is nil
	if A == nil {
		err = errors.New("'A' must be non-nil MatrixA interface.")
		return
	}
	fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return A.Af(x, y, alpha, beta, trans)
	}

	if b == nil {
		err = errors.New("'b' must be non-nil MatrixVariable interface.")
		return
	}

	if kktsolver == nil {
		err = errors.New("nil kktsolver not allowed.")
		return
	}

	x := x0.Copy()
	y := b.Copy()
	y.Scal(0.0)
	z := matrix.FloatZeros(mnl+cdim, 1)
	s := matrix.FloatZeros(mnl+cdim, 1)
	ind := mnl + dims.At("l")[0]
	z.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...)
	s.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...)
	for _, m := range dims.At("q") {
		z.SetIndexes(1.0, ind)
		s.SetIndexes(1.0, ind)
		ind += m
	}
	for _, m := range dims.At("s") {
		iset := matrix.MakeIndexSet(ind, ind+m*m, m+1)
		z.SetIndexes(1.0, iset...)
		s.SetIndexes(1.0, iset...)
		ind += m * m
	}

	rx := x0.Copy()
	ry := b.Copy()
	dx := x.Copy()
	dy := y.Copy()
	rznl := matrix.FloatZeros(mnl, 1)
	rzl := matrix.FloatZeros(cdim, 1)
	dz := matrix.FloatZeros(mnl+cdim, 1)
	ds := matrix.FloatZeros(mnl+cdim, 1)
	lmbda := matrix.FloatZeros(mnl+cdim_diag, 1)
	lmbdasq := matrix.FloatZeros(mnl+cdim_diag, 1)
	sigs := matrix.FloatZeros(dims.Sum("s"), 1)
	sigz := matrix.FloatZeros(dims.Sum("s"), 1)

	dz2 := matrix.FloatZeros(mnl+cdim, 1)
	ds2 := matrix.FloatZeros(mnl+cdim, 1)

	newx := x.Copy()
	newy := y.Copy()
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:67,代碼來源:cpl.go

示例5: scale

/*
   Applies Nesterov-Todd scaling or its inverse.

   Computes

        x := W*x        (trans is false 'N', inverse = false 'N')
        x := W^T*x      (trans is true  'T', inverse = false 'N')
        x := W^{-1}*x   (trans is false 'N', inverse = true  'T')
        x := W^{-T}*x   (trans is true  'T', inverse = true  'T').

   x is a dense float matrix.

   W is a MatrixSet with entries:

   - W['dnl']: positive vector
   - W['dnli']: componentwise inverse of W['dnl']
   - W['d']: positive vector
   - W['di']: componentwise inverse of W['d']
   - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
   - W['beta']: list of positive numbers
   - W['r']: list of square matrices
   - W['rti']: list of square matrices.  rti[k] is the inverse transpose
     of r[k].

   The 'dnl' and 'dnli' entries are optional, and only present when the
   function is called from the nonlinear solver.
*/
func scale(x *matrix.FloatMatrix, W *sets.FloatMatrixSet, trans, inverse bool) (err error) {
	/*DEBUGGED*/
	var wl []*matrix.FloatMatrix
	var w *matrix.FloatMatrix
	ind := 0
	err = nil

	// var minor int = 0
	//if ! checkpnt.MinorEmpty() {
	//	minor = checkpnt.MinorTop()
	//}

	//fmt.Printf("\n%d.%04d scaling x=\n%v\n", checkpnt.Major(), minor, x.ToString("%.17f"))

	// Scaling for nonlinear component xk is xk := dnl .* xk; inverse
	// scaling is xk ./ dnl = dnli .* xk, where dnl = W['dnl'],
	// dnli = W['dnli'].

	if wl = W.At("dnl"); wl != nil {
		if inverse {
			w = W.At("dnli")[0]
		} else {
			w = W.At("dnl")[0]
		}
		for k := 0; k < x.Cols(); k++ {
			err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
				&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k * x.Rows()})
			if err != nil {
				//fmt.Printf("1. TbmvFloat: %v\n", err)
				return
			}
		}
		ind += w.Rows()
	}

	//if ! checkpnt.MinorEmpty() {
	//    checkpnt.Check("000scale", minor)
	//}

	// Scaling for linear 'l' component xk is xk := d .* xk; inverse
	// scaling is xk ./ d = di .* xk, where d = W['d'], di = W['di'].

	if inverse {
		w = W.At("di")[0]
	} else {
		w = W.At("d")[0]
	}

	for k := 0; k < x.Cols(); k++ {
		err = blas.TbmvFloat(w, x, &la_.IOpt{"n", w.Rows()}, &la_.IOpt{"k", 0},
			&la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", k*x.Rows() + ind})
		if err != nil {
			//fmt.Printf("2. TbmvFloat: %v\n", err)
			return
		}
	}
	ind += w.Rows()

	//if ! checkpnt.MinorEmpty() {
	//	checkpnt.Check("010scale", minor)
	//}

	// Scaling for 'q' component is
	//
	//    xk := beta * (2*v*v' - J) * xk
	//        = beta * (2*v*(xk'*v)' - J*xk)
	//
	// where beta = W['beta'][k], v = W['v'][k], J = [1, 0; 0, -I].
	//
	//Inverse scaling is
	//
	//    xk := 1/beta * (2*J*v*v'*J - J) * xk
	//        = 1/beta * (-J) * (2*v*((-J*xk)'*v)' + xk).
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:misc.go

示例6: updateScaling

func updateScaling(W *sets.FloatMatrixSet, lmbda, s, z *matrix.FloatMatrix) (err error) {
	err = nil
	var stmp, ztmp *matrix.FloatMatrix
	/*
	   Nonlinear and 'l' blocks

	      d :=  d .* sqrt( s ./ z )
	      lmbda := lmbda .* sqrt(s) .* sqrt(z)
	*/
	mnl := 0
	dnlset := W.At("dnl")
	dnliset := W.At("dnli")
	dset := W.At("d")
	diset := W.At("di")
	beta := W.At("beta")[0]
	if dnlset != nil && dnlset[0].NumElements() > 0 {
		mnl = dnlset[0].NumElements()
	}
	ml := dset[0].NumElements()
	m := mnl + ml
	//fmt.Printf("ml=%d, mnl=%d, m=%d'n", ml, mnl, m)

	stmp = matrix.FloatVector(s.FloatArray()[:m])
	stmp.Apply(math.Sqrt)
	s.SetIndexesFromArray(stmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...)

	ztmp = matrix.FloatVector(z.FloatArray()[:m])
	ztmp.Apply(math.Sqrt)
	z.SetIndexesFromArray(ztmp.FloatArray(), matrix.MakeIndexSet(0, m, 1)...)

	// d := d .* s .* z
	if len(dnlset) > 0 {
		blas.TbmvFloat(s, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
		blas.TbsvFloat(z, dnlset[0], &la_.IOpt{"n", mnl}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
		//dnliset[0].Apply(dnlset[0], func(a float64)float64 { return 1.0/a})
		//--dnliset[0] = matrix.Inv(dnlset[0])
		matrix.Set(dnliset[0], dnlset[0])
		dnliset[0].Inv()
	}
	blas.TbmvFloat(s, dset[0], &la_.IOpt{"n", ml},
		&la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl})
	blas.TbsvFloat(z, dset[0], &la_.IOpt{"n", ml},
		&la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", mnl})
	//diset[0].Apply(dset[0], func(a float64)float64 { return 1.0/a})
	//--diset[0] = matrix.Inv(dset[0])
	matrix.Set(diset[0], dset[0])
	diset[0].Inv()

	// lmbda := s .* z
	blas.CopyFloat(s, lmbda, &la_.IOpt{"n", m})
	blas.TbmvFloat(z, lmbda, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})

	// 'q' blocks.
	// Let st and zt be the new variables in the old scaling:
	//
	//     st = s_k,   zt = z_k
	//
	// and a = sqrt(st' * J * st),  b = sqrt(zt' * J * zt).
	//
	// 1. Compute the hyperbolic Householder transformation 2*q*q' - J
	//    that maps st/a to zt/b.
	//
	//        c = sqrt( (1 + st'*zt/(a*b)) / 2 )
	//        q = (st/a + J*zt/b) / (2*c).
	//
	//    The new scaling point is
	//
	//        wk := betak * sqrt(a/b) * (2*v[k]*v[k]' - J) * q
	//
	//    with betak = W['beta'][k].
	//
	// 3. The scaled variable:
	//
	//        lambda_k0 = sqrt(a*b) * c
	//        lambda_k1 = sqrt(a*b) * ( (2vk*vk' - J) * (-d*q + u/2) )_1
	//
	//    where
	//
	//        u = st/a - J*zt/b
	//        d = ( vk0 * (vk'*u) + u0/2 ) / (2*vk0 *(vk'*q) - q0 + 1).
	//
	// 4. Update scaling
	//
	//        v[k] := wk^1/2
	//              = 1 / sqrt(2*(wk0 + 1)) * (wk + e).
	//        beta[k] *=  sqrt(a/b)

	ind := m
	for k, v := range W.At("v") {
		m = v.NumElements()

		// ln = sqrt( lambda_k' * J * lambda_k ) !! NOT USED!!
		jnrm2(lmbda, m, ind) // ?? NOT USED ??

		// a = sqrt( sk' * J * sk ) = sqrt( st' * J * st )
		// s := s / a = st / a
		aa := jnrm2(s, m, ind)
		blas.ScalFloat(s, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})

		// b = sqrt( zk' * J * zk ) = sqrt( zt' * J * zt )
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:misc.go

示例7: coneqp_solver

func coneqp_solver(P MatrixVarP, q MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix,
	A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar,
	solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) {

	err = nil
	EXPON := 3
	STEP := 0.99

	sol = &Solution{Unknown,
		nil,
		0.0, 0.0, 0.0, 0.0, 0.0,
		0.0, 0.0, 0.0, 0.0, 0.0, 0}

	//var kktsolver func(*sets.FloatMatrixSet)(KKTFunc, error) = nil
	var refinement int
	var correction bool = true

	feasTolerance := FEASTOL
	absTolerance := ABSTOL
	relTolerance := RELTOL
	maxIter := MAXITERS
	if solopts.FeasTol > 0.0 {
		feasTolerance = solopts.FeasTol
	}
	if solopts.AbsTol > 0.0 {
		absTolerance = solopts.AbsTol
	}
	if solopts.RelTol > 0.0 {
		relTolerance = solopts.RelTol
	}
	if solopts.MaxIter > 0 {
		maxIter = solopts.MaxIter
	}
	if q == nil {
		err = errors.New("'q' must be non-nil MatrixVariable with one column")
		return
	}

	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if h.Cols() != 1 {
		err = errors.New("'h' must be non-nil matrix with one column")
		return
	}
	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}

	err = checkConeQpDimensions(dims)
	if err != nil {
		return
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	//cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
	indq := make([]int, 0)
	indq = append(indq, dims.At("l")[0])
	for _, k := range dims.At("q") {
		indq = append(indq, indq[len(indq)-1]+k)
	}

	// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
	inds := make([]int, 0)
	inds = append(inds, indq[len(indq)-1])
	for _, k := range dims.At("s") {
		inds = append(inds, inds[len(inds)-1]+k*k)
	}

	if P == nil {
		err = errors.New("'P' must be non-nil MatrixVarP interface.")
		return
	}
	fP := func(u, v MatrixVariable, alpha, beta float64) error {
		return P.Pf(u, v, alpha, beta)
	}

	if G == nil {
		err = errors.New("'G' must be non-nil MatrixG interface.")
		return
	}
	fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return G.Gf(x, y, alpha, beta, trans)
	}

	// Check A and set defaults if it is nil
	fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return A.Af(x, y, alpha, beta, trans)
	}

	// Check b and set defaults if it is nil
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:coneqp.go

示例8: conelp_solver

func conelp_solver(c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix,
	A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar,
	solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {

	err = nil
	const EXPON = 3
	const STEP = 0.99

	sol = &Solution{Unknown,
		nil,
		0.0, 0.0, 0.0, 0.0, 0.0,
		0.0, 0.0, 0.0, 0.0, 0.0, 0}

	var refinement int

	if solopts.Refinement > 0 {
		refinement = solopts.Refinement
	} else {
		refinement = 0
		if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
			refinement = 1
		}
	}
	feasTolerance := FEASTOL
	absTolerance := ABSTOL
	relTolerance := RELTOL
	maxIter := MAXITERS
	if solopts.FeasTol > 0.0 {
		feasTolerance = solopts.FeasTol
	}
	if solopts.AbsTol > 0.0 {
		absTolerance = solopts.AbsTol
	}
	if solopts.RelTol > 0.0 {
		relTolerance = solopts.RelTol
	}
	if solopts.MaxIter > 0 {
		maxIter = solopts.MaxIter
	}
	if err = checkConeLpDimensions(dims); err != nil {
		return
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	//cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
	indq := make([]int, 0)
	indq = append(indq, dims.At("l")[0])
	for _, k := range dims.At("q") {
		indq = append(indq, indq[len(indq)-1]+k)
	}

	// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
	inds := make([]int, 0)
	inds = append(inds, indq[len(indq)-1])
	for _, k := range dims.At("s") {
		inds = append(inds, inds[len(inds)-1]+k*k)
	}

	Gf := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return G.Gf(x, y, alpha, beta, trans)
	}

	Af := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return A.Af(x, y, alpha, beta, trans)
	}

	// kktsolver(W) returns a routine for solving 3x3 block KKT system
	//
	//     [ 0   A'  G'*W^{-1} ] [ ux ]   [ bx ]
	//     [ A   0   0         ] [ uy ] = [ by ].
	//     [ G   0   -W'       ] [ uz ]   [ bz ]

	if kktsolver == nil {
		err = errors.New("nil kktsolver not allowed.")
		return
	}

	// res() evaluates residual in 5x5 block KKT system
	//
	//     [ vx   ]    [ 0         ]   [ 0   A'  G'  c ] [ ux        ]
	//     [ vy   ]    [ 0         ]   [-A   0   0   b ] [ uy        ]
	//     [ vz   ] += [ W'*us     ] - [-G   0   0   h ] [ W^{-1}*uz ]
	//     [ vtau ]    [ dg*ukappa ]   [-c' -b' -h'  0 ] [ utau/dg   ]
	//
	//           vs += lmbda o (dz + ds)
	//       vkappa += lmbdg * (dtau + dkappa).
	ws3 := matrix.FloatZeros(cdim, 1)
	wz3 := matrix.FloatZeros(cdim, 1)
	checkpnt.AddMatrixVar("ws3", ws3)
	checkpnt.AddMatrixVar("wz3", wz3)

	//
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:conelp.go


注:本文中的github.com/henrylee2cn/algorithm/cvx/sets.FloatMatrixSet.At方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。