本文整理匯總了Golang中github.com/dedis/crypto/nist.NewAES128SHA256P256函數的典型用法代碼示例。如果您正苦於以下問題:Golang NewAES128SHA256P256函數的具體用法?Golang NewAES128SHA256P256怎麽用?Golang NewAES128SHA256P256使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了NewAES128SHA256P256函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: GetSuite
func GetSuite(suite string) abstract.Suite {
var s abstract.Suite
switch {
case suite == "nist256":
s = nist.NewAES128SHA256P256()
case suite == "nist512":
s = nist.NewAES128SHA256QR512()
case suite == "ed25519":
s = ed25519.NewAES128SHA256Ed25519(true)
default:
s = nist.NewAES128SHA256P256()
}
return s
}
示例2: ExampleSchnorr
// Example of using Schnorr
func ExampleSchnorr() {
// Crypto setup
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("example"))
// Create a public/private keypair (X,x)
x := suite.Scalar().Pick(rand) // create a private key x
X := suite.Point().Mul(nil, x) // corresponding public key X
// Generate the signature
M := []byte("Hello World!") // message we want to sign
sig := SchnorrSign(suite, rand, M, x)
fmt.Print("Signature:\n" + hex.Dump(sig))
// Verify the signature against the correct message
err := SchnorrVerify(suite, M, X, sig)
if err != nil {
panic(err.Error())
}
fmt.Println("Signature verified against correct message.")
// Output:
// Signature:
// 00000000 c1 7a 91 74 06 48 5d 53 d4 92 27 71 58 07 eb d5 |.z.t.H]S..'qX...|
// 00000010 75 a5 89 92 78 67 fc b1 eb 36 55 63 d1 32 12 20 |u...xg...6Uc.2. |
// 00000020 2c 78 84 81 04 0d 2a a8 fa 80 d0 e8 c3 14 65 e3 |,x....*.......e.|
// 00000030 7f f2 7c 55 c5 d2 c6 70 51 89 40 cd 63 50 bf c6 |..|[email protected]|
// Signature verified against correct message.
}
示例3: Example_diffieHellman
/*
This example illustrates how to use the crypto toolkit's abstract group API
to perform basic Diffie-Hellman key exchange calculations,
using the NIST-standard P256 elliptic curve in this case.
Any other suitable elliptic curve or other cryptographic group may be used
simply by changing the first line that picks the suite.
*/
func Example_diffieHellman() {
// Crypto setup: NIST-standardized P256 curve with AES-128 and SHA-256
suite := nist.NewAES128SHA256P256()
// Alice's public/private keypair
a := suite.Scalar().Pick(random.Stream) // Alice's private key
A := suite.Point().Mul(nil, a) // Alice's public key
// Bob's public/private keypair
b := suite.Scalar().Pick(random.Stream) // Alice's private key
B := suite.Point().Mul(nil, b) // Alice's public key
// Assume Alice and Bob have securely obtained each other's public keys.
// Alice computes their shared secret using Bob's public key.
SA := suite.Point().Mul(B, a)
// Bob computes their shared secret using Alice's public key.
SB := suite.Point().Mul(A, b)
// They had better be the same!
if !SA.Equal(SB) {
panic("Diffie-Hellman key exchange didn't work")
}
println("Shared secret: " + SA.String())
// Output:
}
示例4: Example_elGamalEncryption
/*
This example illustrates how the crypto toolkit may be used
to perform "pure" ElGamal encryption,
in which the message to be encrypted is small enough to be embedded
directly within a group element (e.g., in an elliptic curve point).
For basic background on ElGamal encryption see for example
http://en.wikipedia.org/wiki/ElGamal_encryption.
Most public-key crypto libraries tend not to support embedding data in points,
in part because for "vanilla" public-key encryption you don't need it:
one would normally just generate an ephemeral Diffie-Hellman secret
and use that to seed a symmetric-key crypto algorithm such as AES,
which is much more efficient per bit and works for arbitrary-length messages.
However, in many advanced public-key crypto algorithms it is often useful
to be able to embedded data directly into points and compute with them:
as just one of many examples,
the proactively verifiable anonymous messaging scheme prototyped in Verdict
(see http://dedis.cs.yale.edu/dissent/papers/verdict-abs).
For fancier versions of ElGamal encryption implemented in this toolkit
see for example anon.Encrypt, which encrypts a message for
one of several possible receivers forming an explicit anonymity set.
*/
func Example_elGamalEncryption() {
suite := nist.NewAES128SHA256P256()
// Create a public/private keypair
a := suite.Secret().Pick(random.Stream) // Alice's private key
A := suite.Point().Mul(nil, a) // Alice's public key
// ElGamal-encrypt a message using the public key.
m := []byte("The quick brown fox")
K, C, _ := ElGamalEncrypt(suite, A, m)
// Decrypt it using the corresponding private key.
mm, err := ElGamalDecrypt(suite, a, K, C)
// Make sure it worked!
if err != nil {
panic("decryption failed: " + err.Error())
}
if string(mm) != string(m) {
panic("decryption produced wrong output: " + string(mm))
}
println("Decryption succeeded: " + string(mm))
// Output:
}
示例5: GenerateP256
// Generateparams will return a curve and and its random associated
// Use random bytes of length RandomByteLength
func GenerateP256(buf []byte) P256Params {
// Curve generation
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher(buf)
return P256Params{Suite: suite, Rand: rand}
}
示例6: benchGenSigOpenSSL
func benchGenSigOpenSSL(nkeys int) []byte {
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("example"))
return Sign(suite, rand, benchMessage,
Set(benchPubOpenSSL[:nkeys]), nil,
0, benchPriOpenSSL)
}
示例7: TestMUCommit
// Test for Marshalling and Unmarshalling Comit Messages
// Important: when making empty HashIds len should be set to HASH_SIZE
func TestMUCommit(t *testing.T) {
var err error
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("exampfsdjkhujgkjsgfjgle"))
rand2 := suite.Cipher([]byte("examplsfhsjedgjhsge2"))
cm := &sign.CommitmentMessage{}
cm.V, _ = suite.Point().Pick(nil, rand)
cm.V_hat, _ = suite.Point().Pick(nil, rand2)
cm.MTRoot = make([]byte, hashid.Size)
sm := sign.SigningMessage{Type: sign.Commitment, Com: cm}
smBytes, err := sm.MarshalBinary()
if err != nil {
t.Error(err)
}
messg := &sign.SigningMessage{}
err = messg.UnmarshalBinary(smBytes)
cm2 := messg.Com
// test for equality after marshal and unmarshal
if !cm2.V.Equal(cm.V) ||
!cm2.V_hat.Equal(cm.V_hat) ||
bytes.Compare(cm2.MTRoot, cm.MTRoot) != 0 {
t.Error("commit message MU failed")
}
}
示例8: TestMUChallenge
// Test for Marshalling and Unmarshalling Challenge Messages
// Important: when making empty HashIds len should be set to HASH_SIZE
func TestMUChallenge(t *testing.T) {
nHashIds := 3
var err error
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("example"))
cm := &sign.ChallengeMessage{}
cm.C = suite.Secret().Pick(rand)
cm.MTRoot = make([]byte, hashid.Size)
cm.Proof = proof.Proof(make([]hashid.HashId, nHashIds))
for i := 0; i < nHashIds; i++ {
cm.Proof[i] = make([]byte, hashid.Size)
}
sm := &sign.SigningMessage{Type: sign.Challenge, Chm: cm}
smBytes, err := sm.MarshalBinary()
if err != nil {
t.Error(err)
}
messg := &sign.SigningMessage{}
err = messg.UnmarshalBinary(smBytes)
cm2 := messg.Chm
// test for equality after marshal and unmarshal
if !cm2.C.Equal(cm.C) ||
bytes.Compare(cm2.MTRoot, cm.MTRoot) != 0 ||
!byteArrayEqual(cm2.Proof, cm.Proof) {
t.Error("challenge message MU failed")
}
}
示例9: TestSmallConfigHealthy
// Configuration file data/exconf.json
// 0
// / \
// 1 4
// / \ \
// 2 3 5
func TestSmallConfigHealthy(t *testing.T) {
suite := nist.NewAES128SHA256P256()
RoundsPerView := 100
if err := runTreeSmallConfig(sign.MerkleTree, RoundsPerView, suite, 0); err != nil {
t.Fatal(err)
}
}
示例10: ExampleOr_2
// This code shows how to create and verify Or-predicate proofs,
// such as the one above.
// In this case, we know a secret x such that X=x*B,
// but we don't know a secret y such that Y=y*B,
// because we simply pick Y as a random point
// instead of generating it by scalar multiplication.
// (And if the group is cryptographically secure
// we won't find be able to find such a y.)
func ExampleOr_2() {
// Create an Or predicate.
pred := Or(Rep("X", "x", "B"), Rep("Y", "y", "B"))
fmt.Println("Predicate: " + pred.String())
// Crypto setup
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("example"))
B := suite.Point().Base() // standard base point
// Create a public/private keypair (X,x) and a random point Y
x := suite.Scalar().Pick(rand) // create a private key x
X := suite.Point().Mul(nil, x) // corresponding public key X
Y, _ := suite.Point().Pick(nil, rand) // pick a random point Y
// We'll need to tell the prover which Or clause is actually true.
// In this case clause 0, the first sub-predicate, is true:
// i.e., we know a secret x such that X=x*B.
choice := make(map[Predicate]int)
choice[pred] = 0
// Generate a proof that we know the discrete logarithm of X or Y.
sval := map[string]abstract.Scalar{"x": x}
pval := map[string]abstract.Point{"B": B, "X": X, "Y": Y}
prover := pred.Prover(suite, sval, pval, choice)
proof, _ := HashProve(suite, "TEST", rand, prover)
fmt.Print("Proof:\n" + hex.Dump(proof))
// Verify this knowledge proof.
// The verifier doesn't need the secret values or choice map, of course.
verifier := pred.Verifier(suite, pval)
err := HashVerify(suite, "TEST", verifier, proof)
if err != nil {
panic("proof failed to verify!")
}
fmt.Println("Proof verified.")
// Output:
// Predicate: X=x*B || Y=y*B
// Proof:
// 00000000 04 af 84 ed e5 86 04 cf 81 e4 18 17 84 0c 39 ab |..............9.|
// 00000010 fe 5c bc cc 00 85 e0 a2 ee aa d5 22 18 dd c4 a1 |.\........."....|
// 00000020 5b 85 52 d4 dd 72 9b d2 2b e2 02 d2 5f 6f cb 10 |[.R..r..+..._o..|
// 00000030 b5 1b 18 c3 02 1e 2f dd 50 54 9d 4c 19 aa 30 80 |....../.PT.L..0.|
// 00000040 4a 04 f8 26 2f 55 ed b3 00 ad 38 ba f9 0f d6 fb |J..&/U....8.....|
// 00000050 0a d1 0e 56 be dd 71 7d 1d a9 36 2f 1f 20 b8 98 |...V..q}..6/. ..|
// 00000060 a6 3f d0 fa dc 52 ca 57 8d 7e 37 aa ac e5 8c 4c |.?...R.W.~7....L|
// 00000070 2a eb d9 5c 0c 68 c8 e8 ac 99 7f b4 96 56 cf 59 |*..\.h.......V.Y|
// 00000080 79 6f c5 c2 0a 9f 1f 3b 34 61 0f 9b b7 50 00 b7 |yo.....;4a...P..|
// 00000090 29 02 8e d5 41 9a 92 95 6b 4e 18 5b 89 a5 93 1e |)...A...kN.[....|
// 000000a0 42 cd 32 17 7d 53 c5 e4 48 79 49 b2 3e 1e e2 62 |B.2.}S..HyI.>..b|
// 000000b0 39 08 13 d5 2e f8 c5 e9 c1 28 09 91 7a 95 c9 12 |9........(..z...|
// 000000c0 17 85 49 9e b0 3c fe fc 5d 5b 73 b1 d2 bf f9 59 |..I..<..][s....Y|
// 000000d0 5b 5f 10 12 cb 9c d0 c6 bc 2c 75 fb 52 9c 66 c5 |[_.......,u.R.f.|
// 000000e0 17 cb 93 8b c6 f6 34 12 83 a0 32 2e 82 2c 4b fb |......4...2..,K.|
// 000000f0 b3 0c a1 4b a5 e3 27 43 b6 2f ed fa ca 4f 93 83 |...K..'C./...O..|
// 00000100 fd 56 |.V|
// Proof verified.
}
示例11: All
// All Returns a map of all suites
func All() Suites {
s := make(Suites)
s.add(nist.NewAES128SHA256P256())
s.add(nist.NewAES128SHA256QR512())
s.add(ed25519.NewAES128SHA256Ed25519(false))
s.add(edwards.NewAES128SHA256Ed25519(false))
return s
}
示例12: UnmarshalBinary
func (v *Vote) UnmarshalBinary(data []byte) error {
var cons = make(protobuf.Constructors)
var point abstract.Point
var secret abstract.Secret
var suite = nist.NewAES128SHA256P256()
cons[reflect.TypeOf(&point).Elem()] = func() interface{} { return suite.Point() }
cons[reflect.TypeOf(&secret).Elem()] = func() interface{} { return suite.Secret() }
return protobuf.DecodeWithConstructors(data, v, cons)
}
示例13: TestSmallConfigFaulty
func TestSmallConfigFaulty(t *testing.T) {
faultyNodes := make([]int, 0)
faultyNodes = append(faultyNodes, 2, 5)
suite := nist.NewAES128SHA256P256()
RoundsPerView := 100
if err := runTreeSmallConfig(sign.MerkleTree, RoundsPerView, suite, 1, faultyNodes...); err != nil {
t.Fatal(err)
}
}
示例14: TestRep
func TestRep(t *testing.T) {
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher(abstract.RandomKey)
x := suite.Scalar().Pick(rand)
y := suite.Scalar().Pick(rand)
B := suite.Point().Base()
X := suite.Point().Mul(nil, x)
Y := suite.Point().Mul(X, y)
R := suite.Point().Add(X, Y)
choice := make(map[Predicate]int)
// Simple single-secret predicate: prove X=x*B
log := Rep("X", "x", "B")
// Two-secret representation: prove R=x*B+y*X
rep := Rep("R", "x", "B", "y", "X")
// Make an and-predicate
and := And(log, rep)
andx := And(and)
// Make up a couple incorrect facts
falseLog := Rep("Y", "x", "B")
falseRep := Rep("R", "x", "B", "y", "B")
falseAnd := And(falseLog, falseRep)
or1 := Or(falseAnd, andx)
choice[or1] = 1
or1x := Or(or1) // test trivial case
choice[or1x] = 0
or2a := Rep("B", "y", "X")
or2b := Rep("R", "x", "R")
or2 := Or(or2a, or2b)
or2x := Or(or2) // test trivial case
pred := Or(or1x, or2x)
choice[pred] = 0
sval := map[string]abstract.Scalar{"x": x, "y": y}
pval := map[string]abstract.Point{"B": B, "X": X, "Y": Y, "R": R}
prover := pred.Prover(suite, sval, pval, choice)
proof, err := HashProve(suite, "TEST", rand, prover)
if err != nil {
panic("prover: " + err.Error())
}
verifier := pred.Verifier(suite, pval)
if err := HashVerify(suite, "TEST", verifier, proof); err != nil {
panic("verify: " + err.Error())
}
}
示例15: ExampleSign_anonSet
// This example demonstrates how to create unlinkable anonymity-set signatures,
// and to verify them,
// using a small anonymity set containing three public keys.
func ExampleSign_anonSet() {
// Crypto setup
suite := nist.NewAES128SHA256P256()
rand := suite.Cipher([]byte("example"))
// Create an anonymity set of random "public keys"
X := make([]abstract.Point, 3)
for i := range X { // pick random points
X[i], _ = suite.Point().Pick(nil, rand)
}
// Make just one of them an actual public/private keypair (X[mine],x)
mine := 1 // only the signer knows this
x := suite.Secret().Pick(rand) // create a private key x
X[mine] = suite.Point().Mul(nil, x) // corresponding public key X
// Generate the signature
M := []byte("Hello World!") // message we want to sign
sig := Sign(suite, rand, M, Set(X), nil, mine, x)
fmt.Print("Signature:\n" + hex.Dump(sig))
// Verify the signature against the correct message
tag, err := Verify(suite, M, Set(X), nil, sig)
if err != nil {
panic(err.Error())
}
if tag == nil || len(tag) != 0 {
panic("Verify returned wrong tag")
}
fmt.Println("Signature verified against correct message.")
// Verify the signature against the wrong message
BAD := []byte("Goodbye world!")
tag, err = Verify(suite, BAD, Set(X), nil, sig)
if err == nil || tag != nil {
panic("Signature verified against wrong message!?")
}
fmt.Println("Verifying against wrong message: " + err.Error())
// Output:
// Signature:
// 00000000 eb 16 0d c9 1e 19 f5 da f7 9b 77 7d 52 0b f1 82 |..........w}R...|
// 00000010 4b e3 dd 6c 44 f3 6f fe c3 c1 1a 6e 1f a8 43 26 |K..lD.o....n..C&|
// 00000020 63 d3 5a 0e 97 78 e6 74 ce a0 24 34 c1 66 7d af |c.Z..x.t..$4.f}.|
// 00000030 32 9e 59 22 f2 9a 67 3c ea e5 4f 54 6d 3e 07 f1 |2.Y"..g<..OTm>..|
// 00000040 63 10 77 96 09 a3 c1 e4 85 f8 d9 97 0c 47 dc 73 |c.w..........G.s|
// 00000050 da 6c d8 11 8a 2e 00 a7 f2 01 45 e0 91 4e 28 d6 |.l........E..N(.|
// 00000060 b2 b5 3a e1 c8 8c f7 29 8a 13 75 59 98 ea ce f4 |..:....)..uY....|
// 00000070 6d d5 d0 62 85 51 8e fe d9 4a 02 1f 35 03 33 d3 |m..b.Q...J..5.3.|
// Signature verified against correct message.
// Verifying against wrong message: invalid signature
}