本文整理匯總了Golang中github.com/dedis/crypto/abstract.Point.Mul方法的典型用法代碼示例。如果您正苦於以下問題:Golang Point.Mul方法的具體用法?Golang Point.Mul怎麽用?Golang Point.Mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/dedis/crypto/abstract.Point
的用法示例。
在下文中一共展示了Point.Mul方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: ElGamalVerify
func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
signatureBuffer []byte, g abstract.Point) error {
// Decode the signature
buf := bytes.NewBuffer(signatureBuffer)
sig := basicSig{}
if err := abstract.Read(buf, &sig, suite); err != nil {
return err
}
r := sig.R
c := sig.C
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(g, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashElGamal(suite, message, T)
if !c.Equal(sig.C) {
return errors.New("invalid signature")
}
return nil
}
示例2: Verify
// Verify checks a signature generated by Sign.
//
// The caller provides the message, anonymity set, and linkage scope
// with which the signature was purportedly produced.
// If the signature is a valid linkable signature (linkScope != nil),
// this function returns a linkage tag that uniquely corresponds
// to the signer within the given linkScope.
// If the signature is a valid unlinkable signature (linkScope == nil),
// returns an empty but non-nil byte-slice instead of a linkage tag on success.
// Returns a nil linkage tag and an error if the signature is invalid.
func Verify(suite abstract.Suite, message []byte, anonymitySet Set,
linkScope []byte, signatureBuffer []byte) ([]byte, error) {
n := len(anonymitySet) // anonymity set size
L := []abstract.Point(anonymitySet) // public keys in ring
// Decode the signature
buf := bytes.NewBuffer(signatureBuffer)
var linkBase, linkTag abstract.Point
sig := lSig{}
sig.S = make([]abstract.Scalar, n)
if linkScope != nil { // linkable ring signature
if err := suite.Read(buf, &sig); err != nil {
return nil, err
}
linkStream := suite.Cipher(linkScope)
linkBase, _ = suite.Point().Pick(nil, linkStream)
linkTag = sig.Tag
} else { // unlinkable ring signature
if err := suite.Read(buf, &sig.C0); err != nil {
return nil, err
}
if err := suite.Read(buf, &sig.S); err != nil {
return nil, err
}
}
// Pre-hash the ring-position-invariant parameters to H1.
H1pre := signH1pre(suite, linkScope, linkTag, message)
// Verify the signature
var P, PG, PH abstract.Point
P = suite.Point()
PG = suite.Point()
if linkScope != nil {
PH = suite.Point()
}
s := sig.S
ci := sig.C0
for i := 0; i < n; i++ {
PG.Add(PG.Mul(nil, s[i]), P.Mul(L[i], ci))
if linkScope != nil {
PH.Add(PH.Mul(linkBase, s[i]), P.Mul(linkTag, ci))
}
ci = signH1(suite, H1pre, PG, PH)
}
if !ci.Equal(sig.C0) {
return nil, errors.New("invalid signature")
}
// Return the re-encoded linkage tag, for uniqueness checking
if linkScope != nil {
tag, _ := linkTag.MarshalBinary()
return tag, nil
} else {
return []byte{}, nil
}
}
示例3: ElGamalVerify
func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
sig BasicSig) error {
r := sig.R
c := sig.C
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(nil, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashElGamal(suite, message, T)
if !c.Equal(sig.C) {
return errors.New("invalid signature")
}
return nil
}
示例4: SchnorrVerify
func SchnorrVerify(suite abstract.Suite, message []byte,
signature net.BasicSignature) error {
publicKey := signature.Pub
r := signature.Resp
c := signature.Chall
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(nil, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashSchnorr(suite, message, T)
if !c.Equal(signature.Chall) {
return errors.New("invalid signature")
}
return nil
}
示例5: pickPoint
// Pick a [pseudo-]random curve point with optional embedded data,
// filling in the point's x,y coordinates
// and returning any remaining data not embedded.
func (c *curve) pickPoint(P point, data []byte, rand cipher.Stream) []byte {
// How much data to embed?
dl := c.pickLen()
if dl > len(data) {
dl = len(data)
}
// Retry until we find a valid point
var x, y nist.Int
var Q abstract.Point
for {
// Get random bits the size of a compressed Point encoding,
// in which the topmost bit is reserved for the x-coord sign.
l := c.PointLen()
b := make([]byte, l)
rand.XORKeyStream(b, b) // Interpret as little-endian
if data != nil {
b[0] = byte(dl) // Encode length in low 8 bits
copy(b[1:1+dl], data) // Copy in data to embed
}
util.Reverse(b, b) // Convert to big-endian form
xsign := b[0] >> 7 // save x-coordinate sign bit
b[0] &^= 0xff << uint(c.P.BitLen()&7) // clear high bits
y.M = &c.P // set y-coordinate
y.SetBytes(b)
if !c.solveForX(&x, &y) { // Corresponding x-coordinate?
continue // none, retry
}
// Pick a random sign for the x-coordinate
if c.coordSign(&x) != uint(xsign) {
x.Neg(&x)
}
// Initialize the point
P.initXY(&x.V, &y.V, c.self)
if c.full {
// If we're using the full group,
// we just need any point on the curve, so we're done.
return data[dl:]
}
// We're using the prime-order subgroup,
// so we need to make sure the point is in that subgroup.
// If we're not trying to embed data,
// we can convert our point into one in the subgroup
// simply by multiplying it by the cofactor.
if data == nil {
P.Mul(P, &c.cofact) // multiply by cofactor
if P.Equal(c.null) {
continue // unlucky; try again
}
return data[dl:]
}
// Since we need the point's y-coordinate to make sense,
// we must simply check if the point is in the subgroup
// and retry point generation until it is.
if Q == nil {
Q = c.self.Point()
}
Q.Mul(P, &c.order)
if Q.Equal(c.null) {
return data[dl:]
}
// Keep trying...
}
}
示例6: Sign
// Sign creates an optionally anonymous, optionally linkable
// signature on a given message.
//
// The caller supplies one or more public keys representing an anonymity set,
// and the private key corresponding to one of those public keys.
// The resulting signature proves to a verifier that the owner of
// one of these public keys signed the message,
// without revealing which key-holder signed the message,
// offering anonymity among the members of this explicit anonymity set.
// The other users whose keys are listed in the anonymity set need not consent
// or even be aware that they have been included in an anonymity set:
// anyone having a suitable public key may be "conscripted" into a set.
//
// If the provided anonymity set contains only one public key (the signer's),
// then this function produces a traditional non-anonymous signature,
// equivalent in both size and performance to a standard ElGamal signature.
//
// The caller may request either unlinkable or linkable anonymous signatures.
// If linkScope is nil, this function generates an unlinkable signature,
// which contains no information about which member signed the message.
// The anonymity provided by unlinkable signatures is forward-secure,
// in that a signature reveals nothing about which member generated it,
// even if all members' private keys are later released.
// For cryptographic background on unlinkable anonymity-set signatures -
// also known as ring signatures or ad-hoc group signatures -
// see Rivest, "How to Leak a Secret" at
// http://people.csail.mit.edu/rivest/RivestShamirTauman-HowToLeakASecret.pdf.
//
// If the caller passes a non-nil linkScope,
// the resulting anonymous signature will be linkable.
// This means that given two signatures produced using the same linkScope,
// a verifier will be able to tell whether
// the same or different anonymity set members produced those signatures.
// In particular, verifying a linkable signature yields a linkage tag.
// This linkage tag has a 1-to-1 correspondence with the signer's public key
// within a given linkScope, but is cryptographically unlinkable
// to either the signer's public key or to linkage tags in other scopes.
// The provided linkScope may be an arbitrary byte-string;
// the only significance these scopes have is whether they are equal or unequal.
// For details on the linkable signature algorithm this function implements,
// see Liu/Wei/Wong,
// "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups" at
// http://www.cs.cityu.edu.hk/~duncan/papers/04liuetal_lsag.pdf.
//
// Linkage tags may be used to protect against sock-puppetry or Sybil attacks
// in situations where a verifier needs to know how many distinct members
// of an anonymity set are present or signed messages in a given context.
// It is cryptographically hard for one anonymity set member
// to produce signatures with different linkage tags in the same scope.
// An important and fundamental downside, however, is that
// linkable signatures do NOT offer forward-secure anonymity.
// If an anonymity set member's private key is later released,
// it is trivial to check whether or not that member produced a given signature.
// Also, anonymity set members who did NOT sign a message could
// (voluntarily or under coercion) prove that they did not sign it,
// e.g., simply by signing some other message in that linkage context
// and noting that the resulting linkage tag comes out different.
// Thus, linkable anonymous signatures are not appropriate to use
// in situations where there may be significant risk
// that members' private keys may later be compromised,
// or that members may be persuaded or coerced into revealing whether or not
// they produced a signature of interest.
//
func Sign(suite abstract.Suite, random cipher.Stream, message []byte,
anonymitySet Set, linkScope []byte, mine int, privateKey abstract.Secret) []byte {
// Note that Rivest's original ring construction directly supports
// heterogeneous rings containing public keys of different types -
// e.g., a mixture of RSA keys and DSA keys with varying parameters.
// Our ring signature construction currently supports
// only homogeneous rings containing compatible keys
// drawn from the cipher suite (e.g., the same elliptic curve).
// The upside to this constrint is greater flexibility:
// e.g., we also easily obtain linkable ring signatures,
// which are not readily feasible with the original ring construction.
n := len(anonymitySet) // anonymity set size
L := []abstract.Point(anonymitySet) // public keys in anonymity set
pi := mine
// If we want a linkable ring signature, produce correct linkage tag,
// as a pseudorandom base point multiplied by our private key.
// Liu's scheme specifies the linkScope as a hash of the ring;
// this is one reasonable choice of linkage scope,
// but there are others, so we parameterize this choice.
var linkBase, linkTag abstract.Point
if linkScope != nil {
linkStream := suite.Cipher(linkScope)
linkBase, _ = suite.Point().Pick(nil, linkStream)
linkTag = suite.Point().Mul(linkBase, privateKey)
}
// First pre-hash the parameters to H1
// that are invariant for different ring positions,
// so that we don't have to hash them many times.
H1pre := signH1pre(suite, linkScope, linkTag, message)
// Pick a random commit for my ring position
u := suite.Secret().Pick(random)
var UB, UL abstract.Point
//.........這裏部分代碼省略.........
示例7: thver
// Simple helper to verify Theta elements,
// by checking whether A^a*B^-b = T.
// P,Q,s are simply "scratch" abstract.Point/Scalars reused for efficiency.
func thver(A, B, T, P, Q abstract.Point, a, b, s abstract.Scalar) bool {
P.Mul(A, a)
Q.Mul(B, s.Neg(b))
P.Add(P, Q)
return P.Equal(T)
}