當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Point.Mul方法代碼示例

本文整理匯總了Golang中github.com/dedis/crypto/abstract.Point.Mul方法的典型用法代碼示例。如果您正苦於以下問題:Golang Point.Mul方法的具體用法?Golang Point.Mul怎麽用?Golang Point.Mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/dedis/crypto/abstract.Point的用法示例。


在下文中一共展示了Point.Mul方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: ElGamalVerify

func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
	signatureBuffer []byte, g abstract.Point) error {

	// Decode the signature
	buf := bytes.NewBuffer(signatureBuffer)
	sig := basicSig{}
	if err := abstract.Read(buf, &sig, suite); err != nil {
		return err
	}
	r := sig.R
	c := sig.C

	// Compute base**(r + x*c) == T
	var P, T abstract.Point
	P = suite.Point()
	T = suite.Point()
	T.Add(T.Mul(g, r), P.Mul(publicKey, c))

	// Verify that the hash based on the message and T
	// matches the challange c from the signature
	c = hashElGamal(suite, message, T)
	if !c.Equal(sig.C) {
		return errors.New("invalid signature")
	}

	return nil
}
開發者ID:anonyreputation,項目名稱:anonCred,代碼行數:27,代碼來源:Util.go

示例2: Verify

// Verify checks a signature generated by Sign.
//
// The caller provides the message, anonymity set, and linkage scope
// with which the signature was purportedly produced.
// If the signature is a valid linkable signature (linkScope != nil),
// this function returns a linkage tag that uniquely corresponds
// to the signer within the given linkScope.
// If the signature is a valid unlinkable signature (linkScope == nil),
// returns an empty but non-nil byte-slice instead of a linkage tag on success.
// Returns a nil linkage tag and an error if the signature is invalid.
func Verify(suite abstract.Suite, message []byte, anonymitySet Set,
	linkScope []byte, signatureBuffer []byte) ([]byte, error) {

	n := len(anonymitySet)              // anonymity set size
	L := []abstract.Point(anonymitySet) // public keys in ring

	// Decode the signature
	buf := bytes.NewBuffer(signatureBuffer)
	var linkBase, linkTag abstract.Point
	sig := lSig{}
	sig.S = make([]abstract.Scalar, n)
	if linkScope != nil { // linkable ring signature
		if err := suite.Read(buf, &sig); err != nil {
			return nil, err
		}
		linkStream := suite.Cipher(linkScope)
		linkBase, _ = suite.Point().Pick(nil, linkStream)
		linkTag = sig.Tag
	} else { // unlinkable ring signature
		if err := suite.Read(buf, &sig.C0); err != nil {
			return nil, err
		}
		if err := suite.Read(buf, &sig.S); err != nil {
			return nil, err
		}
	}

	// Pre-hash the ring-position-invariant parameters to H1.
	H1pre := signH1pre(suite, linkScope, linkTag, message)

	// Verify the signature
	var P, PG, PH abstract.Point
	P = suite.Point()
	PG = suite.Point()
	if linkScope != nil {
		PH = suite.Point()
	}
	s := sig.S
	ci := sig.C0
	for i := 0; i < n; i++ {
		PG.Add(PG.Mul(nil, s[i]), P.Mul(L[i], ci))
		if linkScope != nil {
			PH.Add(PH.Mul(linkBase, s[i]), P.Mul(linkTag, ci))
		}
		ci = signH1(suite, H1pre, PG, PH)
	}
	if !ci.Equal(sig.C0) {
		return nil, errors.New("invalid signature")
	}

	// Return the re-encoded linkage tag, for uniqueness checking
	if linkScope != nil {
		tag, _ := linkTag.MarshalBinary()
		return tag, nil
	} else {
		return []byte{}, nil
	}
}
開發者ID:LegoShrimp,項目名稱:crypto,代碼行數:68,代碼來源:sig.go

示例3: ElGamalVerify

func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
	sig BasicSig) error {
	r := sig.R
	c := sig.C

	// Compute base**(r + x*c) == T
	var P, T abstract.Point
	P = suite.Point()
	T = suite.Point()
	T.Add(T.Mul(nil, r), P.Mul(publicKey, c))

	// Verify that the hash based on the message and T
	// matches the challange c from the signature
	c = hashElGamal(suite, message, T)
	if !c.Equal(sig.C) {
		return errors.New("invalid signature")
	}

	return nil
}
開發者ID:Liamsi,項目名稱:cothority,代碼行數:20,代碼來源:basicSig.go

示例4: SchnorrVerify

func SchnorrVerify(suite abstract.Suite, message []byte,
	signature net.BasicSignature) error {
	publicKey := signature.Pub
	r := signature.Resp
	c := signature.Chall

	// Compute base**(r + x*c) == T
	var P, T abstract.Point
	P = suite.Point()
	T = suite.Point()
	T.Add(T.Mul(nil, r), P.Mul(publicKey, c))

	// Verify that the hash based on the message and T
	// matches the challange c from the signature
	c = hashSchnorr(suite, message, T)
	if !c.Equal(signature.Chall) {
		return errors.New("invalid signature")
	}

	return nil
}
開發者ID:mlncn,項目名稱:cothority,代碼行數:21,代碼來源:crypto.go

示例5: pickPoint

// Pick a [pseudo-]random curve point with optional embedded data,
// filling in the point's x,y coordinates
// and returning any remaining data not embedded.
func (c *curve) pickPoint(P point, data []byte, rand cipher.Stream) []byte {

	// How much data to embed?
	dl := c.pickLen()
	if dl > len(data) {
		dl = len(data)
	}

	// Retry until we find a valid point
	var x, y nist.Int
	var Q abstract.Point
	for {
		// Get random bits the size of a compressed Point encoding,
		// in which the topmost bit is reserved for the x-coord sign.
		l := c.PointLen()
		b := make([]byte, l)
		rand.XORKeyStream(b, b) // Interpret as little-endian
		if data != nil {
			b[0] = byte(dl)       // Encode length in low 8 bits
			copy(b[1:1+dl], data) // Copy in data to embed
		}
		util.Reverse(b, b) // Convert to big-endian form

		xsign := b[0] >> 7                    // save x-coordinate sign bit
		b[0] &^= 0xff << uint(c.P.BitLen()&7) // clear high bits

		y.M = &c.P // set y-coordinate
		y.SetBytes(b)

		if !c.solveForX(&x, &y) { // Corresponding x-coordinate?
			continue // none, retry
		}

		// Pick a random sign for the x-coordinate
		if c.coordSign(&x) != uint(xsign) {
			x.Neg(&x)
		}

		// Initialize the point
		P.initXY(&x.V, &y.V, c.self)
		if c.full {
			// If we're using the full group,
			// we just need any point on the curve, so we're done.
			return data[dl:]
		}

		// We're using the prime-order subgroup,
		// so we need to make sure the point is in that subgroup.
		// If we're not trying to embed data,
		// we can convert our point into one in the subgroup
		// simply by multiplying it by the cofactor.
		if data == nil {
			P.Mul(P, &c.cofact) // multiply by cofactor
			if P.Equal(c.null) {
				continue // unlucky; try again
			}
			return data[dl:]
		}

		// Since we need the point's y-coordinate to make sense,
		// we must simply check if the point is in the subgroup
		// and retry point generation until it is.
		if Q == nil {
			Q = c.self.Point()
		}
		Q.Mul(P, &c.order)
		if Q.Equal(c.null) {
			return data[dl:]
		}

		// Keep trying...
	}
}
開發者ID:LegoShrimp,項目名稱:crypto,代碼行數:76,代碼來源:curve.go

示例6: Sign

// Sign creates an optionally anonymous, optionally linkable
// signature on a given message.
//
// The caller supplies one or more public keys representing an anonymity set,
// and the private key corresponding to one of those public keys.
// The resulting signature proves to a verifier that the owner of
// one of these public keys signed the message,
// without revealing which key-holder signed the message,
// offering anonymity among the members of this explicit anonymity set.
// The other users whose keys are listed in the anonymity set need not consent
// or even be aware that they have been included in an anonymity set:
// anyone having a suitable public key may be "conscripted" into a set.
//
// If the provided anonymity set contains only one public key (the signer's),
// then this function produces a traditional non-anonymous signature,
// equivalent in both size and performance to a standard ElGamal signature.
//
// The caller may request either unlinkable or linkable anonymous signatures.
// If linkScope is nil, this function generates an unlinkable signature,
// which contains no information about which member signed the message.
// The anonymity provided by unlinkable signatures is forward-secure,
// in that a signature reveals nothing about which member generated it,
// even if all members' private keys are later released.
// For cryptographic background on unlinkable anonymity-set signatures -
// also known as ring signatures or ad-hoc group signatures -
// see Rivest, "How to Leak a Secret" at
// http://people.csail.mit.edu/rivest/RivestShamirTauman-HowToLeakASecret.pdf.
//
// If the caller passes a non-nil linkScope,
// the resulting anonymous signature will be linkable.
// This means that given two signatures produced using the same linkScope,
// a verifier will be able to tell whether
// the same or different anonymity set members produced those signatures.
// In particular, verifying a linkable signature yields a linkage tag.
// This linkage tag has a 1-to-1 correspondence with the signer's public key
// within a given linkScope, but is cryptographically unlinkable
// to either the signer's public key or to linkage tags in other scopes.
// The provided linkScope may be an arbitrary byte-string;
// the only significance these scopes have is whether they are equal or unequal.
// For details on the linkable signature algorithm this function implements,
// see Liu/Wei/Wong,
// "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups" at
// http://www.cs.cityu.edu.hk/~duncan/papers/04liuetal_lsag.pdf.
//
// Linkage tags may be used to protect against sock-puppetry or Sybil attacks
// in situations where a verifier needs to know how many distinct members
// of an anonymity set are present or signed messages in a given context.
// It is cryptographically hard for one anonymity set member
// to produce signatures with different linkage tags in the same scope.
// An important and fundamental downside, however, is that
// linkable signatures do NOT offer forward-secure anonymity.
// If an anonymity set member's private key is later released,
// it is trivial to check whether or not that member produced a given signature.
// Also, anonymity set members who did NOT sign a message could
// (voluntarily or under coercion) prove that they did not sign it,
// e.g., simply by signing some other message in that linkage context
// and noting that the resulting linkage tag comes out different.
// Thus, linkable anonymous signatures are not appropriate to use
// in situations where there may be significant risk
// that members' private keys may later be compromised,
// or that members may be persuaded or coerced into revealing whether or not
// they produced a signature of interest.
//
func Sign(suite abstract.Suite, random cipher.Stream, message []byte,
	anonymitySet Set, linkScope []byte, mine int, privateKey abstract.Secret) []byte {

	// Note that Rivest's original ring construction directly supports
	// heterogeneous rings containing public keys of different types -
	// e.g., a mixture of RSA keys and DSA keys with varying parameters.
	// Our ring signature construction currently supports
	// only homogeneous rings containing compatible keys
	// drawn from the cipher suite (e.g., the same elliptic curve).
	// The upside to this constrint is greater flexibility:
	// e.g., we also easily obtain linkable ring signatures,
	// which are not readily feasible with the original ring construction.

	n := len(anonymitySet)              // anonymity set size
	L := []abstract.Point(anonymitySet) // public keys in anonymity set
	pi := mine

	// If we want a linkable ring signature, produce correct linkage tag,
	// as a pseudorandom base point multiplied by our private key.
	// Liu's scheme specifies the linkScope as a hash of the ring;
	// this is one reasonable choice of linkage scope,
	// but there are others, so we parameterize this choice.
	var linkBase, linkTag abstract.Point
	if linkScope != nil {
		linkStream := suite.Cipher(linkScope)
		linkBase, _ = suite.Point().Pick(nil, linkStream)
		linkTag = suite.Point().Mul(linkBase, privateKey)
	}

	// First pre-hash the parameters to H1
	// that are invariant for different ring positions,
	// so that we don't have to hash them many times.
	H1pre := signH1pre(suite, linkScope, linkTag, message)

	// Pick a random commit for my ring position
	u := suite.Secret().Pick(random)
	var UB, UL abstract.Point
//.........這裏部分代碼省略.........
開發者ID:eftychis,項目名稱:crypto-1,代碼行數:101,代碼來源:sig.go

示例7: thver

// Simple helper to verify Theta elements,
// by checking whether A^a*B^-b = T.
// P,Q,s are simply "scratch" abstract.Point/Scalars reused for efficiency.
func thver(A, B, T, P, Q abstract.Point, a, b, s abstract.Scalar) bool {
	P.Mul(A, a)
	Q.Mul(B, s.Neg(b))
	P.Add(P, Q)
	return P.Equal(T)
}
開發者ID:LegoShrimp,項目名稱:crypto,代碼行數:9,代碼來源:simple.go


注:本文中的github.com/dedis/crypto/abstract.Point.Mul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。