本文整理匯總了Golang中github.com/CryptocurrencyCabal/htcd/btcec.S256函數的典型用法代碼示例。如果您正苦於以下問題:Golang S256函數的具體用法?Golang S256怎麽用?Golang S256使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了S256函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: TestEncodeDecodeWIF
func TestEncodeDecodeWIF(t *testing.T) {
priv1, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{
0x0c, 0x28, 0xfc, 0xa3, 0x86, 0xc7, 0xa2, 0x27,
0x60, 0x0b, 0x2f, 0xe5, 0x0b, 0x7c, 0xae, 0x11,
0xec, 0x86, 0xd3, 0xbf, 0x1f, 0xbe, 0x47, 0x1b,
0xe8, 0x98, 0x27, 0xe1, 0x9d, 0x72, 0xaa, 0x1d})
priv2, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{
0xdd, 0xa3, 0x5a, 0x14, 0x88, 0xfb, 0x97, 0xb6,
0xeb, 0x3f, 0xe6, 0xe9, 0xef, 0x2a, 0x25, 0x81,
0x4e, 0x39, 0x6f, 0xb5, 0xdc, 0x29, 0x5f, 0xe9,
0x94, 0xb9, 0x67, 0x89, 0xb2, 0x1a, 0x03, 0x98})
wif1, err := NewWIF(priv1, &chaincfg.MainNetParams, false)
if err != nil {
t.Fatal(err)
}
wif2, err := NewWIF(priv2, &chaincfg.TestNet3Params, true)
if err != nil {
t.Fatal(err)
}
tests := []struct {
wif *WIF
encoded string
}{
{
wif1,
"5HueCGU8rMjxEXxiPuD5BDku4MkFqeZyd4dZ1jvhTVqvbTLvyTJ",
},
{
wif2,
"cV1Y7ARUr9Yx7BR55nTdnR7ZXNJphZtCCMBTEZBJe1hXt2kB684q",
},
}
for _, test := range tests {
// Test that encoding the WIF structure matches the expected string.
s := test.wif.String()
if s != test.encoded {
t.Errorf("TestEncodeDecodePrivateKey failed: want '%s', got '%s'",
test.encoded, s)
continue
}
// Test that decoding the expected string results in the original WIF
// structure.
w, err := DecodeWIF(test.encoded)
if err != nil {
t.Error(err)
continue
}
if got := w.String(); got != test.encoded {
t.Errorf("NewWIF failed: want '%v', got '%v'", test.wif, got)
}
}
}
示例2: NewKeyFromString
// NewKeyFromString returns a new extended key instance from a base58-encoded
// extended key.
func NewKeyFromString(key string) (*ExtendedKey, error) {
// The base58-decoded extended key must consist of a serialized payload
// plus an additional 4 bytes for the checksum.
decoded := base58.Decode(key)
if len(decoded) != serializedKeyLen+4 {
return nil, ErrInvalidKeyLen
}
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
// Split the payload and checksum up and ensure the checksum matches.
payload := decoded[:len(decoded)-4]
checkSum := decoded[len(decoded)-4:]
expectedCheckSum := wire.DoubleSha256(payload)[:4]
if !bytes.Equal(checkSum, expectedCheckSum) {
return nil, ErrBadChecksum
}
// Deserialize each of the payload fields.
version := payload[:4]
depth := uint16(payload[4:5][0])
parentFP := payload[5:9]
childNum := binary.BigEndian.Uint32(payload[9:13])
chainCode := payload[13:45]
keyData := payload[45:78]
// The key data is a private key if it starts with 0x00. Serialized
// compressed pubkeys either start with 0x02 or 0x03.
isPrivate := keyData[0] == 0x00
if isPrivate {
// Ensure the private key is valid. It must be within the range
// of the order of the secp256k1 curve and not be 0.
keyData = keyData[1:]
keyNum := new(big.Int).SetBytes(keyData)
if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
} else {
// Ensure the public key parses correctly and is actually on the
// secp256k1 curve.
_, err := btcec.ParsePubKey(keyData, btcec.S256())
if err != nil {
return nil, err
}
}
return newExtendedKey(version, keyData, chainCode, parentFP, depth,
childNum, isPrivate), nil
}
示例3: Example_decryptMessage
// This example demonstrates decrypting a message using a private key that is
// first parsed from raw bytes.
func Example_decryptMessage() {
// Decode the hex-encoded private key.
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
"5ea381e3ce20a2c086a2e388230811")
if err != nil {
fmt.Println(err)
return
}
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" +
"002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" +
"00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" +
"a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" +
"d14174f8b83354fac3ff56075162")
// Try decrypting the message.
plaintext, err := btcec.Decrypt(privKey, ciphertext)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(plaintext))
// Output:
// test message
}
示例4: Example_signMessage
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d
// Signature Verified? true
}
示例5: TestPubKeys
func TestPubKeys(t *testing.T) {
for _, test := range pubKeyTests {
pk, err := btcec.ParsePubKey(test.key, btcec.S256())
if err != nil {
if test.isValid {
t.Errorf("%s pubkey failed when shouldn't %v",
test.name, err)
}
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
continue
}
var pkStr []byte
switch test.format {
case btcec.TstPubkeyUncompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed()
case btcec.TstPubkeyCompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeCompressed()
case btcec.TstPubkeyHybrid:
pkStr = (*btcec.PublicKey)(pk).SerializeHybrid()
}
if !bytes.Equal(test.key, pkStr) {
t.Errorf("%s pubkey: serialized keys do not match.",
test.name)
spew.Dump(test.key)
spew.Dump(pkStr)
}
}
}
示例6: NewMaster
// NewMaster creates a new master node for use in creating a hierarchical
// deterministic key chain. The seed must be between 128 and 512 bits and
// should be generated by a cryptographically secure random generation source.
//
// NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed
// will derive to an unusable secret key. The ErrUnusable error will be
// returned if this should occur, so the caller must check for it and generate a
// new seed accordingly.
func NewMaster(seed []byte) (*ExtendedKey, error) {
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes {
return nil, ErrInvalidSeedLen
}
// First take the HMAC-SHA512 of the master key and the seed data:
// I = HMAC-SHA512(Key = "Bitcoin seed", Data = S)
hmac512 := hmac.New(sha512.New, masterKey)
hmac512.Write(seed)
lr := hmac512.Sum(nil)
// Split "I" into two 32-byte sequences Il and Ir where:
// Il = master secret key
// Ir = master chain code
secretKey := lr[:len(lr)/2]
chainCode := lr[len(lr)/2:]
// Ensure the key in usable.
secretKeyNum := new(big.Int).SetBytes(secretKey)
if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
parentFP := []byte{0x00, 0x00, 0x00, 0x00}
return newExtendedKey(chaincfg.MainNetParams.HDPrivateKeyID[:], secretKey,
chainCode, parentFP, 0, 0, true), nil
}
示例7: pubKeyBytes
// pubKeyBytes returns bytes for the serialized compressed public key associated
// with this extended key in an efficient manner including memoization as
// necessary.
//
// When the extended key is already a public key, the key is simply returned as
// is since it's already in the correct form. However, when the extended key is
// a private key, the public key will be calculated and memoized so future
// accesses can simply return the cached result.
func (k *ExtendedKey) pubKeyBytes() []byte {
// Just return the key if it's already an extended public key.
if !k.isPrivate {
return k.key
}
// This is a private extended key, so calculate and memoize the public
// key if needed.
if len(k.pubKey) == 0 {
pkx, pky := btcec.S256().ScalarBaseMult(k.key)
pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky}
k.pubKey = pubKey.SerializeCompressed()
}
return k.pubKey
}
示例8: TestScalarMult
func TestScalarMult(t *testing.T) {
// Strategy for this test:
// Get a random exponent from the generator point at first
// This creates a new point which is used in the next iteration
// Use another random exponent on the new point.
// We use BaseMult to verify by multiplying the previous exponent
// and the new random exponent together (mod N)
s256 := btcec.S256()
x, y := s256.Gx, s256.Gy
exponent := big.NewInt(1)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
x, y = s256.ScalarMult(x, y, data)
exponent.Mul(exponent, new(big.Int).SetBytes(data))
xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
break
}
}
}
示例9: ECPrivKey
// ECPrivKey converts the extended key to a btcec private key and returns it.
// As you might imagine this is only possible if the extended key is a private
// extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey
// error will be returned if this function is called on a public extended key.
func (k *ExtendedKey) ECPrivKey() (*btcec.PrivateKey, error) {
if !k.isPrivate {
return nil, ErrNotPrivExtKey
}
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), k.key)
return privKey, nil
}
示例10: TestPrivKeys
func TestPrivKeys(t *testing.T) {
tests := []struct {
name string
key []byte
}{
{
name: "check curve",
key: []byte{
0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6,
0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c,
0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9,
0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94,
},
},
}
for _, test := range tests {
priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key)
_, err := btcec.ParsePubKey(
pub.SerializeUncompressed(), btcec.S256())
if err != nil {
t.Errorf("%s privkey: %v", test.name, err)
continue
}
hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
sig, err := priv.Sign(hash)
if err != nil {
t.Errorf("%s could not sign: %v", test.name, err)
continue
}
if !sig.Verify(hash, pub) {
t.Errorf("%s could not verify: %v", test.name, err)
continue
}
serializedKey := priv.Serialize()
if !bytes.Equal(serializedKey, test.key) {
t.Errorf("%s unexpected serialized bytes - got: %x, "+
"want: %x", test.name, serializedKey, test.key)
}
}
}
示例11: Example_encryptMessage
// This example demonstrates encrypting a message for a public key that is first
// parsed from raw bytes, then decrypting it using the corresponding private key.
func Example_encryptMessage() {
// Decode the hex-encoded pubkey of the recipient.
pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" +
"359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" +
"21010db67ac11b1b51b651953d2") // uncompressed pubkey
if err != nil {
fmt.Println(err)
return
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Encrypt a message decryptable by the private key corresponding to pubKey
message := "test message"
ciphertext, err := btcec.Encrypt(pubKey, []byte(message))
if err != nil {
fmt.Println(err)
return
}
// Decode the hex-encoded private key.
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
"5ea381e3ce20a2c086a2e388230811")
if err != nil {
fmt.Println(err)
return
}
// note that we already have corresponding pubKey
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Try decrypting and verify if it's the same message.
plaintext, err := btcec.Decrypt(privKey, ciphertext)
if err != nil {
fmt.Println(err)
return
}
fmt.Println(string(plaintext))
// Output:
// test message
}
示例12: TestGenerateSharedSecret
func TestGenerateSharedSecret(t *testing.T) {
privKey1, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Errorf("private key generation error: %s", err)
return
}
privKey2, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Errorf("private key generation error: %s", err)
return
}
secret1 := btcec.GenerateSharedSecret(privKey1, privKey2.PubKey())
secret2 := btcec.GenerateSharedSecret(privKey2, privKey1.PubKey())
if !bytes.Equal(secret1, secret2) {
t.Errorf("ECDH failed, secrets mismatch - first: %x, second: %x",
secret1, secret2)
}
}
示例13: main
func main() {
fi, err := os.Create("secp256k1.go")
if err != nil {
log.Fatal(err)
}
defer fi.Close()
// Compress the serialized byte points.
serialized := btcec.S256().SerializedBytePoints()
var compressed bytes.Buffer
w := zlib.NewWriter(&compressed)
if _, err := w.Write(serialized); err != nil {
fmt.Println(err)
os.Exit(1)
}
w.Close()
// Encode the compressed byte points with base64.
encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
base64.StdEncoding.Encode(encoded, compressed.Bytes())
fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers")
fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "package btcec")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
fmt.Fprintln(fi, "// DO NOT EDIT")
fmt.Fprintln(fi)
fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded))
a1, b1, a2, b2 := btcec.S256().EndomorphismVectors()
fmt.Println("The following values are the computed linearly " +
"independent vectors needed to make use of the secp256k1 " +
"endomorphism:")
fmt.Printf("a1: %x\n", a1)
fmt.Printf("b1: %x\n", b1)
fmt.Printf("a2: %x\n", a2)
fmt.Printf("b2: %x\n", b2)
}
示例14: TestSignCompact
func TestSignCompact(t *testing.T) {
for i := 0; i < 256; i++ {
name := fmt.Sprintf("test %d", i)
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Errorf("failed to read random data for %s", name)
continue
}
compressed := i%2 != 0
testSignCompact(t, name, btcec.S256(), data, compressed)
}
}
示例15: Example_verifySignature
// This example demonstrates verifying a secp256k1 signature against a public
// key that is first parsed from raw bytes. The signature is also parsed from
// raw bytes.
func Example_verifySignature() {
// Decode hex-encoded serialized public key.
pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" +
"6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5")
if err != nil {
fmt.Println(err)
return
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Decode hex-encoded serialized signature.
sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" +
"8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" +
"1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479")
if err != nil {
fmt.Println(err)
return
}
signature, err := btcec.ParseSignature(sigBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Verify the signature for the message using the public key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
verified := signature.Verify(messageHash, pubKey)
fmt.Println("Signature Verified?", verified)
// Output:
// Signature Verified? true
}