本文整理匯總了Golang中github.com/conseweb/coinutil.Block.Transactions方法的典型用法代碼示例。如果您正苦於以下問題:Golang Block.Transactions方法的具體用法?Golang Block.Transactions怎麽用?Golang Block.Transactions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/conseweb/coinutil.Block
的用法示例。
在下文中一共展示了Block.Transactions方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: disconnectTransactions
// disconnectTransactions updates the passed map by undoing transaction and
// spend information for all transactions in the passed block. Only
// transactions in the passed map are updated.
func disconnectTransactions(txStore TxStore, block *coinutil.Block) error {
// Loop through all of the transactions in the block to see if any of
// them are ones that need to be undone based on the transaction store.
for _, tx := range block.Transactions() {
// Clear this transaction from the transaction store if needed.
// Only clear it rather than deleting it because the transaction
// connect code relies on its presence to decide whether or not
// to update the store and any transactions which exist on both
// sides of a fork would otherwise not be updated.
if txD, exists := txStore[*tx.Sha()]; exists {
txD.Tx = nil
txD.BlockHeight = 0
txD.Spent = nil
txD.Err = database.ErrTxShaMissing
}
// Unspend the origin transaction output.
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
originTx, exists := txStore[*originHash]
if exists && originTx.Tx != nil && originTx.Err == nil {
if originIndex > uint32(len(originTx.Spent)) {
continue
}
originTx.Spent[originIndex] = false
}
}
}
return nil
}
示例2: checkBlockScripts
// checkBlockScripts executes and validates the scripts for all transactions in
// the passed block.
func checkBlockScripts(block *coinutil.Block, txStore TxStore,
scriptFlags txscript.ScriptFlags, sigCache *txscript.SigCache) error {
// Collect all of the transaction inputs and required information for
// validation for all transactions in the block into a single slice.
numInputs := 0
for _, tx := range block.Transactions() {
numInputs += len(tx.MsgTx().TxIn)
}
txValItems := make([]*txValidateItem, 0, numInputs)
for _, tx := range block.Transactions() {
for txInIdx, txIn := range tx.MsgTx().TxIn {
// Skip coinbases.
if txIn.PreviousOutPoint.Index == math.MaxUint32 {
continue
}
txVI := &txValidateItem{
txInIndex: txInIdx,
txIn: txIn,
tx: tx,
}
txValItems = append(txValItems, txVI)
}
}
// Validate all of the inputs.
validator := newTxValidator(txStore, scriptFlags, sigCache)
if err := validator.Validate(txValItems); err != nil {
return err
}
return nil
}
示例3: connectTransactions
// connectTransactions updates the passed map by applying transaction and
// spend information for all the transactions in the passed block. Only
// transactions in the passed map are updated.
func connectTransactions(txStore TxStore, block *coinutil.Block) error {
// Loop through all of the transactions in the block to see if any of
// them are ones we need to update and spend based on the results map.
for _, tx := range block.Transactions() {
// Update the transaction store with the transaction information
// if it's one of the requested transactions.
msgTx := tx.MsgTx()
if txD, exists := txStore[*tx.Sha()]; exists {
txD.Tx = tx
txD.BlockHeight = block.Height()
txD.Spent = make([]bool, len(msgTx.TxOut))
txD.Err = nil
}
// Spend the origin transaction output.
for _, txIn := range msgTx.TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
if originTx, exists := txStore[*originHash]; exists {
if originIndex > uint32(len(originTx.Spent)) {
continue
}
originTx.Spent[originIndex] = true
}
}
}
return nil
}
示例4: DropAfterBlockBySha
// DropAfterBlockBySha will remove any blocks from the database after
// the given block.
func (db *LevelDb) DropAfterBlockBySha(sha *wire.ShaHash) (rerr error) {
db.dbLock.Lock()
defer db.dbLock.Unlock()
defer func() {
if rerr == nil {
rerr = db.processBatches()
} else {
db.lBatch().Reset()
}
}()
startheight := db.nextBlock - 1
keepidx, err := db.getBlkLoc(sha)
if err != nil {
// should the error here be normalized ?
log.Tracef("block loc failed %v ", sha)
return err
}
for height := startheight; height > keepidx; height = height - 1 {
var blk *coinutil.Block
blksha, buf, err := db.getBlkByHeight(height)
if err != nil {
return err
}
blk, err = coinutil.NewBlockFromBytes(buf)
if err != nil {
return err
}
for _, tx := range blk.MsgBlock().Transactions {
err = db.unSpend(tx)
if err != nil {
return err
}
}
// rather than iterate the list of tx backward, do it twice.
for _, tx := range blk.Transactions() {
var txUo txUpdateObj
txUo.delete = true
db.txUpdateMap[*tx.Sha()] = &txUo
}
db.lBatch().Delete(shaBlkToKey(blksha))
db.lBatch().Delete(int64ToKey(int64(height)))
}
// update the last block cache
db.lastBlkShaCached = true
db.lastBlkSha = *sha
db.lastBlkIdx = keepidx
db.nextBlock = keepidx + 1
return nil
}
示例5: checkBlockContext
// checkBlockContext peforms several validation checks on the block which depend
// on its position within the block chain.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: The transaction are not checked to see if they are finalized
// and the somewhat expensive BIP0034 validation is not performed.
//
// The flags are also passed to checkBlockHeaderContext. See its documentation
// for how the flags modify its behavior.
func (b *BlockChain) checkBlockContext(block *coinutil.Block, prevNode *blockNode, flags BehaviorFlags) error {
// The genesis block is valid by definition.
if prevNode == nil {
return nil
}
// Perform all block header related validation checks.
header := &block.MsgBlock().Header
err := b.checkBlockHeaderContext(header, prevNode, flags)
if err != nil {
return err
}
fastAdd := flags&BFFastAdd == BFFastAdd
if !fastAdd {
// The height of this block is one more than the referenced
// previous block.
blockHeight := prevNode.height + 1
// Ensure all transactions in the block are finalized.
for _, tx := range block.Transactions() {
if !IsFinalizedTransaction(tx, blockHeight,
header.Timestamp) {
str := fmt.Sprintf("block contains unfinalized "+
"transaction %v", tx.Sha())
return ruleError(ErrUnfinalizedTx, str)
}
}
// Ensure coinbase starts with serialized block heights for
// blocks whose version is the serializedHeightVersion or newer
// once a majority of the network has upgraded. This is part of
// BIP0034.
if ShouldHaveSerializedBlockHeight(header) &&
b.isMajorityVersion(serializedHeightVersion, prevNode,
b.chainParams.BlockEnforceNumRequired) {
coinbaseTx := block.Transactions()[0]
err := checkSerializedHeight(coinbaseTx, blockHeight)
if err != nil {
return err
}
}
}
return nil
}
示例6: NewMerkleBlock
// NewMerkleBlock returns a new *wire.MsgMerkleBlock and an array of the matched
// transaction index numbers based on the passed block and filter.
func NewMerkleBlock(block *coinutil.Block, filter *Filter) (*wire.MsgMerkleBlock, []uint32) {
numTx := uint32(len(block.Transactions()))
mBlock := merkleBlock{
numTx: numTx,
allHashes: make([]*wire.ShaHash, 0, numTx),
matchedBits: make([]byte, 0, numTx),
}
// Find and keep track of any transactions that match the filter.
var matchedIndices []uint32
for txIndex, tx := range block.Transactions() {
if filter.MatchTxAndUpdate(tx) {
mBlock.matchedBits = append(mBlock.matchedBits, 0x01)
matchedIndices = append(matchedIndices, uint32(txIndex))
} else {
mBlock.matchedBits = append(mBlock.matchedBits, 0x00)
}
mBlock.allHashes = append(mBlock.allHashes, tx.Sha())
}
// Calculate the number of merkle branches (height) in the tree.
height := uint32(0)
for mBlock.calcTreeWidth(height) > 1 {
height++
}
// Build the depth-first partial merkle tree.
mBlock.traverseAndBuild(height, 0)
// Create and return the merkle block.
msgMerkleBlock := wire.MsgMerkleBlock{
Header: block.MsgBlock().Header,
Transactions: uint32(mBlock.numTx),
Hashes: make([]*wire.ShaHash, 0, len(mBlock.finalHashes)),
Flags: make([]byte, (len(mBlock.bits)+7)/8),
}
for _, sha := range mBlock.finalHashes {
msgMerkleBlock.AddTxHash(sha)
}
for i := uint32(0); i < uint32(len(mBlock.bits)); i++ {
msgMerkleBlock.Flags[i/8] |= mBlock.bits[i] << (i % 8)
}
return &msgMerkleBlock, matchedIndices
}
示例7: indexBlockAddrs
// indexBlockAddrs returns a populated index of the all the transactions in the
// passed block based on the addresses involved in each transaction.
func (a *addrIndexer) indexBlockAddrs(blk *coinutil.Block) (database.BlockAddrIndex, error) {
addrIndex := make(database.BlockAddrIndex)
txLocs, err := blk.TxLoc()
if err != nil {
return nil, err
}
for txIdx, tx := range blk.Transactions() {
// Tx's offset and length in the block.
locInBlock := &txLocs[txIdx]
// Coinbases don't have any inputs.
if !blockchain.IsCoinBase(tx) {
// Index the SPK's of each input's previous outpoint
// transaction.
for _, txIn := range tx.MsgTx().TxIn {
// Lookup and fetch the referenced output's tx.
prevOut := txIn.PreviousOutPoint
txList, err := a.server.db.FetchTxBySha(&prevOut.Hash)
if len(txList) == 0 {
return nil, fmt.Errorf("transaction %v not found",
prevOut.Hash)
}
if err != nil {
adxrLog.Errorf("Error fetching tx %v: %v",
prevOut.Hash, err)
return nil, err
}
prevOutTx := txList[len(txList)-1]
inputOutPoint := prevOutTx.Tx.TxOut[prevOut.Index]
indexScriptPubKey(addrIndex, inputOutPoint.PkScript, locInBlock)
}
}
for _, txOut := range tx.MsgTx().TxOut {
indexScriptPubKey(addrIndex, txOut.PkScript, locInBlock)
}
}
return addrIndex, nil
}
示例8: checkBIP0030
// checkBIP0030 ensures blocks do not contain duplicate transactions which
// 'overwrite' older transactions that are not fully spent. This prevents an
// attack where a coinbase and all of its dependent transactions could be
// duplicated to effectively revert the overwritten transactions to a single
// confirmation thereby making them vulnerable to a double spend.
//
// For more details, see https://en.bitcoin.it/wiki/BIP_0030 and
// http://r6.ca/blog/20120206T005236Z.html.
func (b *BlockChain) checkBIP0030(node *blockNode, block *coinutil.Block) error {
// Attempt to fetch duplicate transactions for all of the transactions
// in this block from the point of view of the parent node.
fetchSet := make(map[wire.ShaHash]struct{})
for _, tx := range block.Transactions() {
fetchSet[*tx.Sha()] = struct{}{}
}
txResults, err := b.fetchTxStore(node, fetchSet)
if err != nil {
return err
}
// Examine the resulting data about the requested transactions.
for _, txD := range txResults {
switch txD.Err {
// A duplicate transaction was not found. This is the most
// common case.
case database.ErrTxShaMissing:
continue
// A duplicate transaction was found. This is only allowed if
// the duplicate transaction is fully spent.
case nil:
if !isTransactionSpent(txD) {
str := fmt.Sprintf("tried to overwrite "+
"transaction %v at block height %d "+
"that is not fully spent", txD.Hash,
txD.BlockHeight)
return ruleError(ErrOverwriteTx, str)
}
// Some other unexpected error occurred. Return it now.
default:
return txD.Err
}
}
return nil
}
示例9: InsertBlock
// InsertBlock inserts raw block and transaction data from a block into the
// database. The first block inserted into the database will be treated as the
// genesis block. Every subsequent block insert requires the referenced parent
// block to already exist. This is part of the database.Db interface
// implementation.
func (db *MemDb) InsertBlock(block *coinutil.Block) (int32, error) {
db.Lock()
defer db.Unlock()
if db.closed {
return 0, ErrDbClosed
}
// Reject the insert if the previously reference block does not exist
// except in the case there are no blocks inserted yet where the first
// inserted block is assumed to be a genesis block.
msgBlock := block.MsgBlock()
if _, exists := db.blocksBySha[msgBlock.Header.PrevBlock]; !exists {
if len(db.blocks) > 0 {
return 0, database.ErrPrevShaMissing
}
}
// Build a map of in-flight transactions because some of the inputs in
// this block could be referencing other transactions earlier in this
// block which are not yet in the chain.
txInFlight := map[wire.ShaHash]int{}
transactions := block.Transactions()
for i, tx := range transactions {
txInFlight[*tx.Sha()] = i
}
// Loop through all transactions and inputs to ensure there are no error
// conditions that would prevent them from be inserted into the db.
// Although these checks could could be done in the loop below, checking
// for error conditions up front means the code below doesn't have to
// deal with rollback on errors.
newHeight := int32(len(db.blocks))
for i, tx := range transactions {
// Two old blocks contain duplicate transactions due to being
// mined by faulty miners and accepted by the origin Satoshi
// client. Rules have since been added to the ensure this
// problem can no longer happen, but the two duplicate
// transactions which were originally accepted are forever in
// the block chain history and must be dealth with specially.
// http://blockexplorer.com/b/91842
// http://blockexplorer.com/b/91880
if newHeight == 91842 && tx.Sha().IsEqual(dupTxHash91842) {
continue
}
if newHeight == 91880 && tx.Sha().IsEqual(dupTxHash91880) {
continue
}
for _, txIn := range tx.MsgTx().TxIn {
if isCoinbaseInput(txIn) {
continue
}
// It is acceptable for a transaction input to reference
// the output of another transaction in this block only
// if the referenced transaction comes before the
// current one in this block.
prevOut := &txIn.PreviousOutPoint
if inFlightIndex, ok := txInFlight[prevOut.Hash]; ok {
if i <= inFlightIndex {
log.Warnf("InsertBlock: requested hash "+
" of %s does not exist in-flight",
tx.Sha())
return 0, database.ErrTxShaMissing
}
} else {
originTxns, exists := db.txns[prevOut.Hash]
if !exists {
log.Warnf("InsertBlock: requested hash "+
"of %s by %s does not exist",
prevOut.Hash, tx.Sha())
return 0, database.ErrTxShaMissing
}
originTxD := originTxns[len(originTxns)-1]
if prevOut.Index > uint32(len(originTxD.spentBuf)) {
log.Warnf("InsertBlock: requested hash "+
"of %s with index %d does not "+
"exist", tx.Sha(), prevOut.Index)
return 0, database.ErrTxShaMissing
}
}
}
// Prevent duplicate transactions in the same block.
if inFlightIndex, exists := txInFlight[*tx.Sha()]; exists &&
inFlightIndex < i {
log.Warnf("Block contains duplicate transaction %s",
tx.Sha())
return 0, database.ErrDuplicateSha
}
// Prevent duplicate transactions unless the old one is fully
// spent.
//.........這裏部分代碼省略.........
示例10: fetchInputTransactions
// fetchInputTransactions fetches the input transactions referenced by the
// transactions in the given block from its point of view. See fetchTxList
// for more details on what the point of view entails.
func (b *BlockChain) fetchInputTransactions(node *blockNode, block *coinutil.Block) (TxStore, error) {
// Build a map of in-flight transactions because some of the inputs in
// this block could be referencing other transactions earlier in this
// block which are not yet in the chain.
txInFlight := map[wire.ShaHash]int{}
transactions := block.Transactions()
for i, tx := range transactions {
txInFlight[*tx.Sha()] = i
}
// Loop through all of the transaction inputs (except for the coinbase
// which has no inputs) collecting them into sets of what is needed and
// what is already known (in-flight).
txNeededSet := make(map[wire.ShaHash]struct{})
txStore := make(TxStore)
for i, tx := range transactions[1:] {
for _, txIn := range tx.MsgTx().TxIn {
// Add an entry to the transaction store for the needed
// transaction with it set to missing by default.
originHash := &txIn.PreviousOutPoint.Hash
txD := &TxData{Hash: originHash, Err: database.ErrTxShaMissing}
txStore[*originHash] = txD
// It is acceptable for a transaction input to reference
// the output of another transaction in this block only
// if the referenced transaction comes before the
// current one in this block. Update the transaction
// store acccordingly when this is the case. Otherwise,
// we still need the transaction.
//
// NOTE: The >= is correct here because i is one less
// than the actual position of the transaction within
// the block due to skipping the coinbase.
if inFlightIndex, ok := txInFlight[*originHash]; ok &&
i >= inFlightIndex {
originTx := transactions[inFlightIndex]
txD.Tx = originTx
txD.BlockHeight = node.height
txD.Spent = make([]bool, len(originTx.MsgTx().TxOut))
txD.Err = nil
} else {
txNeededSet[*originHash] = struct{}{}
}
}
}
// Request the input transactions from the point of view of the node.
txNeededStore, err := b.fetchTxStore(node, txNeededSet)
if err != nil {
return nil, err
}
// Merge the results of the requested transactions and the in-flight
// transactions.
for _, txD := range txNeededStore {
txStore[*txD.Hash] = txD
}
return txStore, nil
}
示例11: IsCheckpointCandidate
// IsCheckpointCandidate returns whether or not the passed block is a good
// checkpoint candidate.
//
// The factors used to determine a good checkpoint are:
// - The block must be in the main chain
// - The block must be at least 'CheckpointConfirmations' blocks prior to the
// current end of the main chain
// - The timestamps for the blocks before and after the checkpoint must have
// timestamps which are also before and after the checkpoint, respectively
// (due to the median time allowance this is not always the case)
// - The block must not contain any strange transaction such as those with
// nonstandard scripts
//
// The intent is that candidates are reviewed by a developer to make the final
// decision and then manually added to the list of checkpoints for a network.
func (b *BlockChain) IsCheckpointCandidate(block *coinutil.Block) (bool, error) {
// Checkpoints must be enabled.
if b.noCheckpoints {
return false, fmt.Errorf("checkpoints are disabled")
}
// A checkpoint must be in the main chain.
exists, err := b.db.ExistsSha(block.Sha())
if err != nil {
return false, err
}
if !exists {
return false, nil
}
// A checkpoint must be at least CheckpointConfirmations blocks before
// the end of the main chain.
blockHeight := block.Height()
_, mainChainHeight, err := b.db.NewestSha()
if err != nil {
return false, err
}
if blockHeight > (mainChainHeight - CheckpointConfirmations) {
return false, nil
}
// Get the previous block.
prevHash := &block.MsgBlock().Header.PrevBlock
prevBlock, err := b.db.FetchBlockBySha(prevHash)
if err != nil {
return false, err
}
// Get the next block.
nextHash, err := b.db.FetchBlockShaByHeight(blockHeight + 1)
if err != nil {
return false, err
}
nextBlock, err := b.db.FetchBlockBySha(nextHash)
if err != nil {
return false, err
}
// A checkpoint must have timestamps for the block and the blocks on
// either side of it in order (due to the median time allowance this is
// not always the case).
prevTime := prevBlock.MsgBlock().Header.Timestamp
curTime := block.MsgBlock().Header.Timestamp
nextTime := nextBlock.MsgBlock().Header.Timestamp
if prevTime.After(curTime) || nextTime.Before(curTime) {
return false, nil
}
// A checkpoint must have transactions that only contain standard
// scripts.
for _, tx := range block.Transactions() {
if isNonstandardTransaction(tx) {
return false, nil
}
}
return true, nil
}
示例12: checkConnectBlock
// checkConnectBlock performs several checks to confirm connecting the passed
// block to the main chain (including whatever reorganization might be necessary
// to get this node to the main chain) does not violate any rules.
//
// The CheckConnectBlock function makes use of this function to perform the
// bulk of its work. The only difference is this function accepts a node which
// may or may not require reorganization to connect it to the main chain whereas
// CheckConnectBlock creates a new node which specifically connects to the end
// of the current main chain and then calls this function with that node.
//
// See the comments for CheckConnectBlock for some examples of the type of
// checks performed by this function.
func (b *BlockChain) checkConnectBlock(node *blockNode, block *coinutil.Block) error {
// If the side chain blocks end up in the database, a call to
// CheckBlockSanity should be done here in case a previous version
// allowed a block that is no longer valid. However, since the
// implementation only currently uses memory for the side chain blocks,
// it isn't currently necessary.
// The coinbase for the Genesis block is not spendable, so just return
// now.
if node.hash.IsEqual(b.chainParams.GenesisHash) && b.bestChain == nil {
return nil
}
// BIP0030 added a rule to prevent blocks which contain duplicate
// transactions that 'overwrite' older transactions which are not fully
// spent. See the documentation for checkBIP0030 for more details.
//
// There are two blocks in the chain which violate this
// rule, so the check must be skipped for those blocks. The
// isBIP0030Node function is used to determine if this block is one
// of the two blocks that must be skipped.
enforceBIP0030 := !isBIP0030Node(node)
if enforceBIP0030 {
err := b.checkBIP0030(node, block)
if err != nil {
return err
}
}
// Request a map that contains all input transactions for the block from
// the point of view of its position within the block chain. These
// transactions are needed for verification of things such as
// transaction inputs, counting pay-to-script-hashes, and scripts.
txInputStore, err := b.fetchInputTransactions(node, block)
if err != nil {
return err
}
// BIP0016 describes a pay-to-script-hash type that is considered a
// "standard" type. The rules for this BIP only apply to transactions
// after the timestamp defined by txscript.Bip16Activation. See
// https://en.bitcoin.it/wiki/BIP_0016 for more details.
enforceBIP0016 := false
if node.timestamp.After(txscript.Bip16Activation) {
enforceBIP0016 = true
}
// The number of signature operations must be less than the maximum
// allowed per block. Note that the preliminary sanity checks on a
// block also include a check similar to this one, but this check
// expands the count to include a precise count of pay-to-script-hash
// signature operations in each of the input transaction public key
// scripts.
transactions := block.Transactions()
totalSigOps := 0
for i, tx := range transactions {
numsigOps := CountSigOps(tx)
if enforceBIP0016 {
// Since the first (and only the first) transaction has
// already been verified to be a coinbase transaction,
// use i == 0 as an optimization for the flag to
// countP2SHSigOps for whether or not the transaction is
// a coinbase transaction rather than having to do a
// full coinbase check again.
numP2SHSigOps, err := CountP2SHSigOps(tx, i == 0,
txInputStore)
if err != nil {
return err
}
numsigOps += numP2SHSigOps
}
// Check for overflow or going over the limits. We have to do
// this on every loop iteration to avoid overflow.
lastSigops := totalSigOps
totalSigOps += numsigOps
if totalSigOps < lastSigops || totalSigOps > MaxSigOpsPerBlock {
str := fmt.Sprintf("block contains too many "+
"signature operations - got %v, max %v",
totalSigOps, MaxSigOpsPerBlock)
return ruleError(ErrTooManySigOps, str)
}
}
// Perform several checks on the inputs for each transaction. Also
// accumulate the total fees. This could technically be combined with
// the loop above instead of running another loop over the transactions,
// but by separating it we can avoid running the more expensive (though
//.........這裏部分代碼省略.........
示例13: checkBlockSanity
// checkBlockSanity performs some preliminary checks on a block to ensure it is
// sane before continuing with block processing. These checks are context free.
//
// The flags do not modify the behavior of this function directly, however they
// are needed to pass along to checkBlockHeaderSanity.
func checkBlockSanity(block *coinutil.Block, powLimit *big.Int, timeSource MedianTimeSource, flags BehaviorFlags) error {
msgBlock := block.MsgBlock()
header := &msgBlock.Header
err := checkBlockHeaderSanity(header, powLimit, timeSource, flags)
if err != nil {
return err
}
// A block must have at least one transaction.
numTx := len(msgBlock.Transactions)
if numTx == 0 {
return ruleError(ErrNoTransactions, "block does not contain "+
"any transactions")
}
// A block must not have more transactions than the max block payload.
if numTx > wire.MaxBlockPayload {
str := fmt.Sprintf("block contains too many transactions - "+
"got %d, max %d", numTx, wire.MaxBlockPayload)
return ruleError(ErrTooManyTransactions, str)
}
// A block must not exceed the maximum allowed block payload when
// serialized.
serializedSize := msgBlock.SerializeSize()
if serializedSize > wire.MaxBlockPayload {
str := fmt.Sprintf("serialized block is too big - got %d, "+
"max %d", serializedSize, wire.MaxBlockPayload)
return ruleError(ErrBlockTooBig, str)
}
// The first transaction in a block must be a coinbase.
transactions := block.Transactions()
if !IsCoinBase(transactions[0]) {
return ruleError(ErrFirstTxNotCoinbase, "first transaction in "+
"block is not a coinbase")
}
// A block must not have more than one coinbase.
for i, tx := range transactions[1:] {
if IsCoinBase(tx) {
str := fmt.Sprintf("block contains second coinbase at "+
"index %d", i)
return ruleError(ErrMultipleCoinbases, str)
}
}
// Do some preliminary checks on each transaction to ensure they are
// sane before continuing.
for _, tx := range transactions {
err := CheckTransactionSanity(tx)
if err != nil {
return err
}
}
// Build merkle tree and ensure the calculated merkle root matches the
// entry in the block header. This also has the effect of caching all
// of the transaction hashes in the block to speed up future hash
// checks. Bitcoind builds the tree here and checks the merkle root
// after the following checks, but there is no reason not to check the
// merkle root matches here.
merkles := BuildMerkleTreeStore(block.Transactions())
calculatedMerkleRoot := merkles[len(merkles)-1]
if !header.MerkleRoot.IsEqual(calculatedMerkleRoot) {
str := fmt.Sprintf("block merkle root is invalid - block "+
"header indicates %v, but calculated value is %v",
header.MerkleRoot, calculatedMerkleRoot)
return ruleError(ErrBadMerkleRoot, str)
}
// Check for duplicate transactions. This check will be fairly quick
// since the transaction hashes are already cached due to building the
// merkle tree above.
existingTxHashes := make(map[wire.ShaHash]struct{})
for _, tx := range transactions {
hash := tx.Sha()
if _, exists := existingTxHashes[*hash]; exists {
str := fmt.Sprintf("block contains duplicate "+
"transaction %v", hash)
return ruleError(ErrDuplicateTx, str)
}
existingTxHashes[*hash] = struct{}{}
}
// The number of signature operations must be less than the maximum
// allowed per block.
totalSigOps := 0
for _, tx := range transactions {
// We could potentially overflow the accumulator so check for
// overflow.
lastSigOps := totalSigOps
totalSigOps += CountSigOps(tx)
if totalSigOps < lastSigOps || totalSigOps > MaxSigOpsPerBlock {
str := fmt.Sprintf("block contains too many signature "+
//.........這裏部分代碼省略.........