本文整理匯總了Golang中github.com/conformal/btcwire.DoubleSha256函數的典型用法代碼示例。如果您正苦於以下問題:Golang DoubleSha256函數的具體用法?Golang DoubleSha256怎麽用?Golang DoubleSha256使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了DoubleSha256函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: SignMessage
func SignMessage(privKey string, message string, compress bool) string {
prefixBytes := []byte("Bitcoin Signed Message:\n")
messageBytes := []byte(message)
bytes := []byte{}
bytes = append(bytes, byte(len(prefixBytes)))
bytes = append(bytes, prefixBytes...)
bytes = append(bytes, byte(len(messageBytes)))
bytes = append(bytes, messageBytes...)
privKeyBytes := HexDecode(privKey)
x, y := btcec.S256().ScalarBaseMult(privKeyBytes)
ecdsaPubKey := ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
}
ecdsaPrivKey := &ecdsa.PrivateKey{
PublicKey: ecdsaPubKey,
D: new(big.Int).SetBytes(privKeyBytes),
}
sigbytes, err := btcec.SignCompact(btcec.S256(), ecdsaPrivKey, btcwire.DoubleSha256(bytes), compress)
if err != nil {
panic(err)
}
return base64.StdEncoding.EncodeToString(sigbytes)
}
示例2: String
// String returns the extended key as a human-readable base58-encoded string.
func (k *ExtendedKey) String() string {
if len(k.key) == 0 {
return "zeroed extended key"
}
var childNumBytes [4]byte
depthByte := byte(k.depth % 256)
binary.BigEndian.PutUint32(childNumBytes[:], k.childNum)
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
serializedBytes := make([]byte, 0, serializedKeyLen+4)
serializedBytes = append(serializedBytes, k.version...)
serializedBytes = append(serializedBytes, depthByte)
serializedBytes = append(serializedBytes, k.parentFP...)
serializedBytes = append(serializedBytes, childNumBytes[:]...)
serializedBytes = append(serializedBytes, k.chainCode...)
if k.isPrivate {
serializedBytes = append(serializedBytes, 0x00)
serializedBytes = append(serializedBytes, k.key...)
} else {
serializedBytes = append(serializedBytes, k.pubKeyBytes()...)
}
checkSum := btcwire.DoubleSha256(serializedBytes)[:4]
serializedBytes = append(serializedBytes, checkSum...)
return btcutil.Base58Encode(serializedBytes)
}
示例3: Example_signMessage
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := btcwire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
//
// NOTE: This is commented out for the example since the signature
// produced uses random numbers and therefore will always be different.
//fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Signature Verified? true
}
示例4: DecodeAddress
// DecodeAddress decodes a human-readable payment address string
// returning the 20-byte decoded address, along with the Bitcoin
// network for the address.
//
// DEPRECATED - Use DecodeAddr to decode a string encoded address to
// the Address interface.
func DecodeAddress(addr string) (addrHash []byte, net btcwire.BitcoinNet, err error) {
decoded := Base58Decode(addr)
// Length of decoded address must be 20 bytes + 1 byte for a network
// identifier byte + 4 bytes of checksum.
if len(decoded) != ripemd160.Size+5 {
return nil, 0x00, ErrMalformedAddress
}
switch decoded[0] {
case MainNetAddr:
net = btcwire.MainNet
case TestNetAddr:
net = btcwire.TestNet3
default:
return nil, 0, ErrUnknownNet
}
// Checksum is first four bytes of double SHA256 of the network byte
// and addrHash. Verify this matches the final 4 bytes of the decoded
// address.
tosum := decoded[:ripemd160.Size+1]
cksum := btcwire.DoubleSha256(tosum)[:4]
if !bytes.Equal(cksum, decoded[len(decoded)-4:]) {
return nil, net, ErrMalformedAddress
}
addrHash = make([]byte, ripemd160.Size, ripemd160.Size)
copy(addrHash, decoded[1:ripemd160.Size+1])
return addrHash, net, nil
}
示例5: encodeAddress
// encodeAddress returns a human-readable payment address given a ripemd160 hash
// and netID which encodes the bitcoin network and address type. It is used
// in both pay-to-pubkey-hash (P2PKH) and pay-to-script-hash (P2SH) address
// encoding.
func encodeAddress(hash160 []byte, netID byte) string {
// Format is 1 byte for a network and address class (i.e. P2PKH vs
// P2SH), 20 bytes for a RIPEMD160 hash, and 4 bytes of checksum.
b := make([]byte, 0, 1+ripemd160.Size+4)
b = append(b, netID)
b = append(b, hash160...)
cksum := btcwire.DoubleSha256(b)[:4]
b = append(b, cksum...)
return Base58Encode(b)
}
示例6: getTriedBucket
func (a *AddrManager) getTriedBucket(netAddr *btcwire.NetAddress) int {
// bitcoind hashes this as:
// doublesha256(key + group + truncate_to_64bits(doublesha256(key)) % buckets_per_group) % num_buckets
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(NetAddressKey(netAddr))...)
hash1 := btcwire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= triedBucketsPerGroup
hashbuf := new(bytes.Buffer)
binary.Write(hashbuf, binary.LittleEndian, hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(netAddr)...)
data2 = append(data2, hashbuf.Bytes()...)
hash2 := btcwire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % triedBucketCount)
}
示例7: hashMerkleBranches
// hashMerkleBranches takes two hashes, treated as the left and right tree
// nodes, and returns the hash of their concatenation. This is a helper
// function used to during generatation of a merkle tree.
func hashMerkleBranches(left *btcwire.ShaHash, right *btcwire.ShaHash) *btcwire.ShaHash {
// Concatenate the left and right nodes.
var sha [btcwire.HashSize * 2]byte
copy(sha[:btcwire.HashSize], left.Bytes())
copy(sha[btcwire.HashSize:], right.Bytes())
// Create a new sha hash from the double sha 256. Ignore the error
// here since SetBytes can't fail here due to the fact DoubleSha256
// always returns a []byte of the right size regardless of input.
newSha, _ := btcwire.NewShaHash(btcwire.DoubleSha256(sha[:]))
return newSha
}
示例8: getNewBucket
func (a *AddrManager) getNewBucket(netAddr, srcAddr *btcwire.NetAddress) int {
// bitcoind:
// doublesha256(key + sourcegroup + int64(doublesha256(key + group + sourcegroup))%bucket_per_source_group) % num_new_buckes
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(GroupKey(netAddr))...)
data1 = append(data1, []byte(GroupKey(srcAddr))...)
hash1 := btcwire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= newBucketsPerGroup
hashbuf := new(bytes.Buffer)
binary.Write(hashbuf, binary.LittleEndian, hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(srcAddr)...)
data2 = append(data2, hashbuf.Bytes()...)
hash2 := btcwire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % newBucketCount)
}
示例9: encodeHashWithNetId
func encodeHashWithNetId(netID byte, addrHash []byte) (encoded string, err error) {
tosum := append([]byte{netID}, addrHash...)
cksum := btcwire.DoubleSha256(tosum)
// Address before base58 encoding is 1 byte for netID, 20 bytes for
// hash, plus 4 bytes of checksum.
a := make([]byte, 25, 25)
a[0] = netID
copy(a[1:], addrHash)
copy(a[21:], cksum[:4])
return Base58Encode(a), nil
}
示例10: NewKeyFromString
// NewKeyFromString returns a new extended key instance from a base58-encoded
// extended key.
func NewKeyFromString(key string) (*ExtendedKey, error) {
// The base58-decoded extended key must consist of a serialized payload
// plus an additional 4 bytes for the checksum.
decoded := btcutil.Base58Decode(key)
if len(decoded) != serializedKeyLen+4 {
return nil, ErrInvalidKeyLen
}
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
// Split the payload and checksum up and ensure the checksum matches.
payload := decoded[:len(decoded)-4]
checkSum := decoded[len(decoded)-4:]
expectedCheckSum := btcwire.DoubleSha256(payload)[:4]
if !bytes.Equal(checkSum, expectedCheckSum) {
return nil, ErrBadChecksum
}
// Deserialize each of the payload fields.
version := payload[:4]
depth := uint16(payload[4:5][0])
parentFP := payload[5:9]
childNum := binary.BigEndian.Uint32(payload[9:13])
chainCode := payload[13:45]
keyData := payload[45:78]
// The key data is a private key if it starts with 0x00. Serialized
// compressed pubkeys either start with 0x02 or 0x03.
isPrivate := keyData[0] == 0x00
if isPrivate {
// Ensure the private key is valid. It must be within the range
// of the order of the secp256k1 curve and not be 0.
keyData = keyData[1:]
keyNum := new(big.Int).SetBytes(keyData)
if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
} else {
// Ensure the public key parses correctly and is actually on the
// secp256k1 curve.
_, err := btcec.ParsePubKey(keyData, btcec.S256())
if err != nil {
return nil, err
}
}
return newExtendedKey(version, keyData, chainCode, parentFP, depth,
childNum, isPrivate), nil
}
示例11: DecodeAddr
// DecodeAddr decodes the string encoding of an address and returns
// the Address if addr is a valid encoding for a known address type.
//
// This is named DecodeAddr and not DecodeAddress due to DecodeAddress
// already being defined for an old api. When the old api is eventually
// removed, a proper DecodeAddress function will be added, and DecodeAddr
// will become deprecated.
func DecodeAddr(addr string) (Address, error) {
decoded := Base58Decode(addr)
// Switch on decoded length to determine the type.
switch len(decoded) {
case 1 + ripemd160.Size + 4: // P2PKH or P2SH
// Parse the network and hash type (pubkey hash vs script
// hash) from the first byte.
net := btcwire.MainNet
isscript := false
switch decoded[0] {
case MainNetAddr:
// Use defaults.
case TestNetAddr:
net = btcwire.TestNet3
case MainNetScriptHash:
isscript = true
case TestNetScriptHash:
isscript = true
net = btcwire.TestNet3
default:
return nil, ErrUnknownIdentifier
}
// Verify hash checksum. Checksum is calculated as the first
// four bytes of double SHA256 of the network byte and hash.
tosum := decoded[:ripemd160.Size+1]
cksum := btcwire.DoubleSha256(tosum)[:4]
if !bytes.Equal(cksum, decoded[len(decoded)-4:]) {
return nil, ErrChecksumMismatch
}
// Return concrete type.
if isscript {
return NewAddressScriptHashFromHash(
decoded[1:ripemd160.Size+1], net)
}
return NewAddressPubKeyHash(decoded[1:ripemd160.Size+1],
net)
default:
return nil, errors.New("decoded address is of unknown size")
}
}
示例12: encodeAddress
// encodeAddress returns a human-readable payment address given a ripemd160 hash
// and netid which encodes the bitcoin network and address type. It is used
// in both pay-to-pubkey-hash (P2PKH) and pay-to-script-hash (P2SH) address
// encoding.
func encodeAddress(hash160 []byte, netID byte) string {
tosum := make([]byte, ripemd160.Size+1)
tosum[0] = netID
copy(tosum[1:], hash160)
cksum := btcwire.DoubleSha256(tosum)
// Address before base58 encoding is 1 byte for netID, ripemd160 hash
// size, plus 4 bytes of checksum (total 25).
b := make([]byte, ripemd160.Size+5, ripemd160.Size+5)
b[0] = netID
copy(b[1:], hash160)
copy(b[ripemd160.Size+1:], cksum[:4])
return Base58Encode(b)
}
示例13: DecodePrivateKey
// DecodePrivateKey takes a Wallet Import Format (WIF) string and
// decodes into a 32-byte private key.
func DecodePrivateKey(wif string) ([]byte, btcwire.BitcoinNet, bool, error) {
decoded := Base58Decode(wif)
decodedLen := len(decoded)
compressed := false
// Length of decoded privkey must be 32 bytes + an optional 1 byte (0x01)
// if compressed, plus 1 byte for netID + 4 bytes of checksum
if decodedLen == 32+6 {
compressed = true
if decoded[33] != 0x01 {
return nil, 0, compressed, ErrMalformedPrivateKey
}
} else if decodedLen != 32+5 {
return nil, 0, compressed, ErrMalformedPrivateKey
}
var net btcwire.BitcoinNet
switch decoded[0] {
case MainNetKey:
net = btcwire.MainNet
case TestNetKey:
net = btcwire.TestNet3
default:
return nil, 0, compressed, ErrUnknownNet
}
// Checksum is first four bytes of double SHA256 of the identifier byte
// and privKey. Verify this matches the final 4 bytes of the decoded
// private key.
var tosum []byte
if compressed {
tosum = decoded[:32+1+1]
} else {
tosum = decoded[:32+1]
}
cksum := btcwire.DoubleSha256(tosum)[:4]
if !bytes.Equal(cksum, decoded[decodedLen-4:]) {
return nil, 0, compressed, ErrMalformedPrivateKey
}
privKey := make([]byte, 32, 32)
copy(privKey[:], decoded[1:32+1])
return privKey, net, compressed, nil
}
示例14: DecodeAddress
// DecodeAddress decodes the string encoding of an address and returns
// the Address if addr is a valid encoding for a known address type.
//
// The bitcoin network the address is associated with is extracted if possible.
// When the address does not encode the network, such as in the case of a raw
// public key, the address will be associated with the passed defaultNet.
func DecodeAddress(addr string, defaultNet *btcnet.Params) (Address, error) {
// Serialized public keys are either 65 bytes (130 hex chars) if
// uncompressed/hybrid or 33 bytes (66 hex chars) if compressed.
if len(addr) == 130 || len(addr) == 66 {
serializedPubKey, err := hex.DecodeString(addr)
if err != nil {
return nil, err
}
return NewAddressPubKey(serializedPubKey, defaultNet)
}
// Switch on decoded length to determine the type.
decoded := Base58Decode(addr)
switch len(decoded) {
case 1 + ripemd160.Size + 4: // P2PKH or P2SH
// Verify hash checksum. Checksum is calculated as the first
// four bytes of double SHA256 of the network byte and hash.
tosum := decoded[:ripemd160.Size+1]
cksum := btcwire.DoubleSha256(tosum)[:4]
if !bytes.Equal(cksum, decoded[len(decoded)-4:]) {
return nil, ErrChecksumMismatch
}
netID := decoded[0]
isP2PKH := btcnet.IsPubKeyHashAddrID(netID)
isP2SH := btcnet.IsScriptHashAddrID(netID)
switch hash160 := decoded[1 : ripemd160.Size+1]; {
case isP2PKH && isP2SH:
return nil, ErrAddressCollision
case isP2PKH:
return newAddressPubKeyHash(hash160, netID)
case isP2SH:
return newAddressScriptHashFromHash(hash160, netID)
default:
return nil, ErrUnknownAddressType
}
default:
return nil, errors.New("decoded address is of unknown size")
}
}
示例15: String
// String creates the Wallet Import Format string encoding of a WIF structure.
// See DecodeWIF for a detailed breakdown of the format and requirements of
// a valid WIF string.
func (w *WIF) String() string {
// Precalculate size. Maximum number of bytes before base58 encoding
// is one byte for the network, 32 bytes of private key, possibly one
// extra byte if the pubkey is to be compressed, and finally four
// bytes of checksum.
encodeLen := 1 + btcec.PrivKeyBytesLen + 4
if w.CompressPubKey {
encodeLen++
}
a := make([]byte, 0, encodeLen)
a = append(a, w.netID)
// Pad and append bytes manually, instead of using Serialize, to
// avoid another call to make.
a = paddedAppend(btcec.PrivKeyBytesLen, a, w.PrivKey.D.Bytes())
if w.CompressPubKey {
a = append(a, compressMagic)
}
cksum := btcwire.DoubleSha256(a)[:4]
a = append(a, cksum...)
return Base58Encode(a)
}