本文整理匯總了Golang中github.com/conformal/btcutil.Tx類的典型用法代碼示例。如果您正苦於以下問題:Golang Tx類的具體用法?Golang Tx怎麽用?Golang Tx使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Tx類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: calcMinRelayFee
// calcMinRelayFee retuns the minimum transaction fee required for the passed
// transaction to be accepted into the memory pool and relayed.
func calcMinRelayFee(tx *btcutil.Tx) int64 {
// Most miners allow a free transaction area in blocks they mine to go
// alongside the area used for high-priority transactions as well as
// transactions with fees. A transaction size of up to 1000 bytes is
// considered safe to go into this section. Further, the minimum fee
// calculated below on its own would encourage several small
// transactions to avoid fees rather than one single larger transaction
// which is more desirable. Therefore, as long as the size of the
// transaction does not exceeed 1000 less than the reserved space for
// high-priority transactions, don't require a fee for it.
serializedLen := int64(tx.MsgTx().SerializeSize())
if serializedLen < (defaultBlockPrioritySize - 1000) {
return 0
}
// Calculate the minimum fee for a transaction to be allowed into the
// mempool and relayed by scaling the base fee (which is the minimum
// free transaction relay fee). minTxRelayFee is in Satoshi/KB, so
// divide the transaction size by 1000 to convert to kilobytes. Also,
// integer division is used so fees only increase on full kilobyte
// boundaries.
minFee := (1 + serializedLen/1000) * minTxRelayFee
// Set the minimum fee to the maximum possible value if the calculated
// fee is not in the valid range for monetary amounts.
if minFee < 0 || minFee > btcutil.MaxSatoshi {
minFee = btcutil.MaxSatoshi
}
return minFee
}
示例2: checkSerializedHeight
// checkSerializedHeight checks if the signature script in the passed
// transaction starts with the serialized block height of wantHeight.
func checkSerializedHeight(coinbaseTx *btcutil.Tx, wantHeight int64) error {
sigScript := coinbaseTx.MsgTx().TxIn[0].SignatureScript
if len(sigScript) < 1 {
str := "the coinbase signature script for blocks of " +
"version %d or greater must start with the " +
"length of the serialized block height"
str = fmt.Sprintf(str, serializedHeightVersion)
return RuleError(str)
}
serializedLen := int(sigScript[0])
if len(sigScript[1:]) < serializedLen {
str := "the coinbase signature script for blocks of " +
"version %d or greater must start with the " +
"serialized block height"
str = fmt.Sprintf(str, serializedLen)
return RuleError(str)
}
serializedHeightBytes := make([]byte, 8, 8)
copy(serializedHeightBytes, sigScript[1:serializedLen+1])
serializedHeight := binary.LittleEndian.Uint64(serializedHeightBytes)
if int64(serializedHeight) != wantHeight {
str := fmt.Sprintf("the coinbase signature script serialized "+
"block height is %d when %d was expected",
serializedHeight, wantHeight)
return RuleError(str)
}
return nil
}
示例3: txRecordForInserts
func (c *blockTxCollection) txRecordForInserts(tx *btcutil.Tx) *txRecord {
if i, ok := c.txIndexes[tx.Index()]; ok {
return c.txs[i]
}
record := &txRecord{tx: tx}
// If this new transaction record cannot be appended to the end of the
// txs slice (which would disobey ordering transactions by their block
// index), reslice and update the block's map of block indexes to txs
// slice indexes.
if len(c.txs) > 0 && c.txs[len(c.txs)-1].Tx().Index() > tx.Index() {
i := uint32(len(c.txs))
for i != 0 && c.txs[i-1].Tx().Index() >= tx.Index() {
i--
}
detached := c.txs[i:]
c.txs = append(c.txs[:i], record)
c.txIndexes[tx.Index()] = i
for i, r := range detached {
newIndex := uint32(i + len(c.txs))
c.txIndexes[r.Tx().Index()] = newIndex
if _, ok := c.unspent[r.Tx().Index()]; ok {
c.unspent[r.Tx().Index()] = newIndex
}
}
c.txs = append(c.txs, detached...)
} else {
c.txIndexes[tx.Index()] = uint32(len(c.txs))
c.txs = append(c.txs, record)
}
return record
}
示例4: ValidateTransactionScripts
// ValidateTransactionScripts validates the scripts for the passed transaction
// using multiple goroutines.
func ValidateTransactionScripts(tx *btcutil.Tx, txStore TxStore, flags btcscript.ScriptFlags) error {
// Collect all of the transaction inputs and required information for
// validation.
txIns := tx.MsgTx().TxIn
txValItems := make([]*txValidateItem, 0, len(txIns))
for txInIdx, txIn := range txIns {
// Skip coinbases.
if txIn.PreviousOutpoint.Index == math.MaxUint32 {
continue
}
txVI := &txValidateItem{
txInIndex: txInIdx,
txIn: txIn,
tx: tx,
}
txValItems = append(txValItems, txVI)
}
// Validate all of the inputs.
validator := newTxValidator(txStore, flags)
if err := validator.Validate(txValItems); err != nil {
return err
}
return nil
}
示例5: calcPriority
// calcPriority returns a transaction priority given a transaction and the sum
// of each of its input values multiplied by their age (# of confirmations).
// Thus, the final formula for the priority is:
// sum(inputValue * inputAge) / adjustedTxSize
func calcPriority(tx *btcutil.Tx, serializedTxSize int, inputValueAge float64) float64 {
// In order to encourage spending multiple old unspent transaction
// outputs thereby reducing the total set, don't count the constant
// overhead for each input as well as enough bytes of the signature
// script to cover a pay-to-script-hash redemption with a compressed
// pubkey. This makes additional inputs free by boosting the priority
// of the transaction accordingly. No more incentive is given to avoid
// encouraging gaming future transactions through the use of junk
// outputs. This is the same logic used in the reference
// implementation.
//
// The constant overhead for a txin is 41 bytes since the previous
// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
// signature script length.
//
// A compressed pubkey pay-to-script-hash redemption with a maximum len
// signature is of the form:
// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
// <33 byte compresed pubkey> + OP_CHECKSIG}]
//
// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
overhead := 0
for _, txIn := range tx.MsgTx().TxIn {
// Max inputs + size can't possibly overflow here.
overhead += 41 + minInt(110, len(txIn.SignatureScript))
}
if overhead >= serializedTxSize {
return 0.0
}
return inputValueAge / float64(serializedTxSize-overhead)
}
示例6: IsFinalizedTransaction
// IsFinalizedTransaction determines whether or not a transaction is finalized.
func IsFinalizedTransaction(tx *btcutil.Tx, blockHeight int64, blockTime time.Time) bool {
msgTx := tx.MsgTx()
// Lock time of zero means the transaction is finalized.
lockTime := msgTx.LockTime
if lockTime == 0 {
return true
}
// The lock time field of a transaction is either a block height at
// which the transaction is finalized or a timestamp depending on if the
// value is before the lockTimeThreshold. When it is under the
// threshold it is a block height.
blockTimeOrHeight := int64(0)
if lockTime < lockTimeThreshold {
blockTimeOrHeight = blockHeight
} else {
blockTimeOrHeight = blockTime.Unix()
}
if int64(lockTime) < blockTimeOrHeight {
return true
}
// At this point, the transaction's lock time hasn't occured yet, but
// the transaction might still be finalized if the sequence number
// for all transaction inputs is maxed out.
for _, txIn := range msgTx.TxIn {
if txIn.Sequence != math.MaxUint32 {
return false
}
}
return true
}
示例7: newBlockNotifyCheckTxIn
// newBlockNotifyCheckTxIn is a helper function to iterate through
// each transaction input of a new block and perform any checks and
// notify listening frontends when necessary.
func (s *rpcServer) newBlockNotifyCheckTxIn(tx *btcutil.Tx) {
for wltNtfn, cxt := range s.ws.requests.m {
for _, txin := range tx.MsgTx().TxIn {
for op, id := range cxt.spentRequests {
if txin.PreviousOutpoint != op {
continue
}
reply := &btcjson.Reply{
Result: struct {
TxHash string `json:"txhash"`
Index uint32 `json:"index"`
}{
TxHash: op.Hash.String(),
Index: uint32(op.Index),
},
Error: nil,
Id: &id,
}
replyBytes, err := json.Marshal(reply)
if err != nil {
log.Errorf("RPCS: Unable to marshal spent notification: %v", err)
continue
}
wltNtfn <- replyBytes
s.ws.requests.RemoveSpentRequest(wltNtfn, &op)
}
}
}
}
示例8: findDoubleSpend
func (u *unconfirmedStore) findDoubleSpend(tx *btcutil.Tx) *txRecord {
for _, input := range tx.MsgTx().TxIn {
if r, ok := u.previousOutpoints[input.PreviousOutpoint]; ok {
return r
}
}
return nil
}
示例9: findPreviousCredits
// findPreviousCredits searches for all unspent credits that make up the inputs
// for tx.
func (s *Store) findPreviousCredits(tx *btcutil.Tx) ([]Credit, error) {
type createdCredit struct {
credit Credit
err error
}
inputs := tx.MsgTx().TxIn
creditChans := make([]chan createdCredit, len(inputs))
for i, txIn := range inputs {
creditChans[i] = make(chan createdCredit)
go func(i int, op btcwire.OutPoint) {
key, ok := s.unspent[op]
if !ok {
// Does this input spend an unconfirmed output?
r, ok := s.unconfirmed.txs[op.Hash]
switch {
// Not an unconfirmed tx.
case !ok:
fallthrough
// Output isn't a credit.
case len(r.credits) <= int(op.Index):
fallthrough
// Output isn't a credit.
case r.credits[op.Index] == nil:
fallthrough
// Credit already spent.
case s.unconfirmed.spentUnconfirmed[op] != nil:
close(creditChans[i])
return
}
t := &TxRecord{BlockTxKey{BlockHeight: -1}, r, s}
c := Credit{t, op.Index}
creditChans[i] <- createdCredit{credit: c}
return
}
r, err := s.lookupBlockTx(key)
if err != nil {
creditChans[i] <- createdCredit{err: err}
return
}
t := &TxRecord{key, r, s}
c := Credit{t, op.Index}
creditChans[i] <- createdCredit{credit: c}
}(i, txIn.PreviousOutpoint)
}
spent := make([]Credit, 0, len(inputs))
for _, c := range creditChans {
cc, ok := <-c
if !ok {
continue
}
if cc.err != nil {
return nil, cc.err
}
spent = append(spent, cc.credit)
}
return spent, nil
}
示例10: newBlockNotifyCheckTxOut
// newBlockNotifyCheckTxOut is a helper function to iterate through
// each transaction output of a new block and perform any checks and
// notify listening frontends when necessary.
func (s *rpcServer) newBlockNotifyCheckTxOut(block *btcutil.Block, tx *btcutil.Tx, spent []bool) {
for wltNtfn, cxt := range s.ws.requests.m {
for i, txout := range tx.MsgTx().TxOut {
_, txaddrhash, err := btcscript.ScriptToAddrHash(txout.PkScript)
if err != nil {
log.Debug("Error getting payment address from tx; dropping any Tx notifications.")
break
}
for addr, id := range cxt.txRequests {
if !bytes.Equal(addr[:], txaddrhash) {
continue
}
blkhash, err := block.Sha()
if err != nil {
log.Error("Error getting block sha; dropping Tx notification.")
break
}
txaddr, err := btcutil.EncodeAddress(txaddrhash, s.server.btcnet)
if err != nil {
log.Error("Error encoding address; dropping Tx notification.")
break
}
reply := &btcjson.Reply{
Result: struct {
Sender string `json:"sender"`
Receiver string `json:"receiver"`
BlockHash string `json:"blockhash"`
Height int64 `json:"height"`
TxHash string `json:"txhash"`
Index uint32 `json:"index"`
Amount int64 `json:"amount"`
PkScript string `json:"pkscript"`
Spent bool `json:"spent"`
}{
Sender: "Unknown", // TODO(jrick)
Receiver: txaddr,
BlockHash: blkhash.String(),
Height: block.Height(),
TxHash: tx.Sha().String(),
Index: uint32(i),
Amount: txout.Value,
PkScript: btcutil.Base58Encode(txout.PkScript),
Spent: spent[i],
},
Error: nil,
Id: &id,
}
replyBytes, err := json.Marshal(reply)
if err != nil {
log.Errorf("RPCS: Unable to marshal tx notification: %v", err)
continue
}
wltNtfn <- replyBytes
}
}
}
}
示例11: setDebitsSpends
func (r *txRecord) setDebitsSpends(spends []*BlockOutputKey, tx *btcutil.Tx) error {
if r.debits.spends != nil {
if *r.tx.Sha() == *tx.Sha() {
return ErrDuplicateInsert
}
return ErrInconsistentStore
}
r.debits.spends = spends
return nil
}
示例12: logSkippedDeps
// logSkippedDeps logs any dependencies which are also skipped as a result of
// skipping a transaction while generating a block template at the trace level.
func logSkippedDeps(tx *btcutil.Tx, deps *list.List) {
if deps == nil {
return
}
for e := deps.Front(); e != nil; e = e.Next() {
item := e.Value.(*txPrioItem)
minrLog.Tracef("Skipping tx %s since it depends on %s\n",
item.tx.Sha(), tx.Sha())
}
}
示例13: checkPoolDoubleSpend
// checkPoolDoubleSpend checks whether or not the passed transaction is
// attempting to spend coins already spent by other transactions in the pool.
// Note it does not check for double spends against transactions already in the
// main chain.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) checkPoolDoubleSpend(tx *btcutil.Tx) error {
for _, txIn := range tx.MsgTx().TxIn {
if txR, exists := mp.outpoints[txIn.PreviousOutpoint]; exists {
str := fmt.Sprintf("transaction %v in the pool "+
"already spends the same coins", txR.Sha())
return TxRuleError(str)
}
}
return nil
}
示例14: isClassA
// Bitcoin specific type checking
func isClassA(tx *btcutil.Tx) bool {
mtx := tx.MsgTx()
for _, txOut := range mtx.TxOut {
_, scriptType := mscutil.GetAddrs(txOut.PkScript)
if scriptType == btcscript.MultiSigTy {
return false
}
}
// If it wasn't multi sig it's class a
return true
}
示例15: notifySpentData
func notifySpentData(n ntfnChan, txhash *btcwire.ShaHash, index uint32,
spender *btcutil.Tx) {
var buf bytes.Buffer
// Ignore Serialize's error, as writing to a bytes.buffer
// cannot fail.
spender.MsgTx().Serialize(&buf)
txStr := hex.EncodeToString(buf.Bytes())
ntfn := btcws.NewTxSpentNtfn(txhash.String(), int(index), txStr)
n <- ntfn
}