本文整理匯總了Golang中github.com/conformal/btcec.S256函數的典型用法代碼示例。如果您正苦於以下問題:Golang S256函數的具體用法?Golang S256怎麽用?Golang S256使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了S256函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: SignMessage
func SignMessage(privKey string, message string, compress bool) string {
prefixBytes := []byte("Bitcoin Signed Message:\n")
messageBytes := []byte(message)
bytes := []byte{}
bytes = append(bytes, byte(len(prefixBytes)))
bytes = append(bytes, prefixBytes...)
bytes = append(bytes, byte(len(messageBytes)))
bytes = append(bytes, messageBytes...)
privKeyBytes := HexDecode(privKey)
x, y := btcec.S256().ScalarBaseMult(privKeyBytes)
ecdsaPubKey := ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
}
ecdsaPrivKey := &ecdsa.PrivateKey{
PublicKey: ecdsaPubKey,
D: new(big.Int).SetBytes(privKeyBytes),
}
sigbytes, err := btcec.SignCompact(btcec.S256(), ecdsaPrivKey, btcwire.DoubleSha256(bytes), compress)
if err != nil {
panic(err)
}
return base64.StdEncoding.EncodeToString(sigbytes)
}
示例2: TestEncodeDecodeWIF
func TestEncodeDecodeWIF(t *testing.T) {
priv1, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{
0x0c, 0x28, 0xfc, 0xa3, 0x86, 0xc7, 0xa2, 0x27,
0x60, 0x0b, 0x2f, 0xe5, 0x0b, 0x7c, 0xae, 0x11,
0xec, 0x86, 0xd3, 0xbf, 0x1f, 0xbe, 0x47, 0x1b,
0xe8, 0x98, 0x27, 0xe1, 0x9d, 0x72, 0xaa, 0x1d})
priv2, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{
0xdd, 0xa3, 0x5a, 0x14, 0x88, 0xfb, 0x97, 0xb6,
0xeb, 0x3f, 0xe6, 0xe9, 0xef, 0x2a, 0x25, 0x81,
0x4e, 0x39, 0x6f, 0xb5, 0xdc, 0x29, 0x5f, 0xe9,
0x94, 0xb9, 0x67, 0x89, 0xb2, 0x1a, 0x03, 0x98})
wif1, err := NewWIF(priv1, &btcnet.MainNetParams, false)
if err != nil {
t.Fatal(err)
}
wif2, err := NewWIF(priv2, &btcnet.TestNet3Params, true)
if err != nil {
t.Fatal(err)
}
tests := []struct {
wif *WIF
encoded string
}{
{
wif1,
"5HueCGU8rMjxEXxiPuD5BDku4MkFqeZyd4dZ1jvhTVqvbTLvyTJ",
},
{
wif2,
"cV1Y7ARUr9Yx7BR55nTdnR7ZXNJphZtCCMBTEZBJe1hXt2kB684q",
},
}
for _, test := range tests {
// Test that encoding the WIF structure matches the expected string.
s := test.wif.String()
if s != test.encoded {
t.Errorf("TestEncodeDecodePrivateKey failed: want '%s', got '%s'",
test.encoded, s)
continue
}
// Test that decoding the expected string results in the original WIF
// structure.
w, err := DecodeWIF(test.encoded)
if err != nil {
t.Error(err)
continue
}
if got := w.String(); got != test.encoded {
t.Errorf("NewWIF failed: want '%v', got '%v'", test.wif, got)
}
}
}
示例3: Verify
// Verifies a hash using DER encoded signature
func Verify(pubKey, signature, hash []byte) (bool, error) {
sig, err := btcec.ParseDERSignature(signature, btcec.S256())
if err != nil {
return false, err
}
pk, err := btcec.ParsePubKey(pubKey, btcec.S256())
if err != nil {
return false, nil
}
return sig.Verify(hash, pk), nil
}
示例4: TestPrivKeys
func TestPrivKeys(t *testing.T) {
for _, test := range privKeyTests {
_, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key)
_, err := btcec.ParsePubKey(
pub.SerializeUncompressed(), btcec.S256())
if err != nil {
t.Errorf("%s privkey: %v", test.name, err)
continue
}
}
}
示例5: PubKeyBytesFromPrivKeyBytes
func PubKeyBytesFromPrivKeyBytes(privKeyBytes []byte, compress bool) (pubKeyBytes []byte) {
x, y := btcec.S256().ScalarBaseMult(privKeyBytes)
pub := (*btcec.PublicKey)(&ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
})
if compress {
return pub.SerializeCompressed()
}
return pub.SerializeUncompressed()
}
示例6: NewKeyFromString
// NewKeyFromString returns a new extended key instance from a base58-encoded
// extended key.
func NewKeyFromString(key string) (*ExtendedKey, error) {
// The base58-decoded extended key must consist of a serialized payload
// plus an additional 4 bytes for the checksum.
decoded := btcutil.Base58Decode(key)
if len(decoded) != serializedKeyLen+4 {
return nil, ErrInvalidKeyLen
}
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
// Split the payload and checksum up and ensure the checksum matches.
payload := decoded[:len(decoded)-4]
checkSum := decoded[len(decoded)-4:]
expectedCheckSum := btcwire.DoubleSha256(payload)[:4]
if !bytes.Equal(checkSum, expectedCheckSum) {
return nil, ErrBadChecksum
}
// Deserialize each of the payload fields.
version := payload[:4]
depth := uint16(payload[4:5][0])
parentFP := payload[5:9]
childNum := binary.BigEndian.Uint32(payload[9:13])
chainCode := payload[13:45]
keyData := payload[45:78]
// The key data is a private key if it starts with 0x00. Serialized
// compressed pubkeys either start with 0x02 or 0x03.
isPrivate := keyData[0] == 0x00
if isPrivate {
// Ensure the private key is valid. It must be within the range
// of the order of the secp256k1 curve and not be 0.
keyData = keyData[1:]
keyNum := new(big.Int).SetBytes(keyData)
if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
} else {
// Ensure the public key parses correctly and is actually on the
// secp256k1 curve.
_, err := btcec.ParsePubKey(keyData, btcec.S256())
if err != nil {
return nil, err
}
}
return newExtendedKey(version, keyData, chainCode, parentFP, depth,
childNum, isPrivate), nil
}
示例7: TestPrivKeys
func TestPrivKeys(t *testing.T) {
for _, test := range privKeyTests {
x, y := btcec.S256().ScalarBaseMult(test.key)
pub := (*btcec.PublicKey)(&ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
})
_, err := btcec.ParsePubKey(pub.SerializeUncompressed(), btcec.S256())
if err != nil {
t.Errorf("%s privkey: %v", test.name, err)
continue
}
}
}
示例8: NewAddressPubKey
// NewAddressPubKey returns a new AddressPubKey which represents a pay-to-pubkey
// address. The serializedPubKey parameter must be a valid pubkey and can be
// uncompressed, compressed, or hybrid. The net parameter must be
// btcwire.MainNet or btcwire.TestNet3.
func NewAddressPubKey(serializedPubKey []byte, net btcwire.BitcoinNet) (*AddressPubKey, error) {
pubKey, err := btcec.ParsePubKey(serializedPubKey, btcec.S256())
if err != nil {
return nil, err
}
// Set the format of the pubkey. This probably should be returned
// from btcec, but do it here to avoid API churn. We already know the
// pubkey is valid since it parsed above, so it's safe to simply examine
// the leading byte to get the format.
pkFormat := PKFUncompressed
switch serializedPubKey[0] {
case 0x02:
fallthrough
case 0x03:
pkFormat = PKFCompressed
case 0x06:
fallthrough
case 0x07:
pkFormat = PKFHybrid
}
ecPubKey := (*btcec.PublicKey)(pubKey)
addr := &AddressPubKey{pubKeyFormat: pkFormat, pubKey: ecPubKey, net: net}
return addr, nil
}
示例9: pubKeyBytes
// pubKeyBytes returns bytes for the serialized compressed public key associated
// with this extended key in an efficient manner including memoization as
// necessary.
//
// When the extended key is already a public key, the key is simply returned as
// is since it's already in the correct form. However, when the extended key is
// a private key, the public key will be calculated and memoized so future
// accesses can simply return the cached result.
func (k *ExtendedKey) pubKeyBytes() []byte {
// Just return the key if it's already an extended public key.
if !k.isPrivate {
return k.key
}
// This is a private extended key, so calculate and memoize the public
// key if needed.
if len(k.pubKey) == 0 {
pkx, pky := btcec.S256().ScalarBaseMult(k.key)
pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky}
k.pubKey = pubKey.SerializeCompressed()
}
return k.pubKey
}
示例10: BenchmarkSigVerify
// BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to
// verify signatures.
func BenchmarkSigVerify(b *testing.B) {
b.StopTimer()
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
pubKey := ecdsa.PublicKey{
Curve: btcec.S256(),
X: fromHex("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
Y: fromHex("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
}
// Double sha256 of []byte{0x01, 0x02, 0x03, 0x04}
msgHash := fromHex("8de472e2399610baaa7f84840547cd409434e31f5d3bd71e4d947f283874f9c0")
sigR := fromHex("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c")
sigS := fromHex("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f")
if !ecdsa.Verify(&pubKey, msgHash.Bytes(), sigR, sigS) {
b.Errorf("Signature failed to verify")
return
}
b.StartTimer()
for i := 0; i < b.N; i++ {
ecdsa.Verify(&pubKey, msgHash.Bytes(), sigR, sigS)
}
}
示例11: NewMaster
// NewMaster creates a new master node for use in creating a hierarchical
// deterministic key chain. The seed must be between 128 and 512 bits and
// should be generated by a cryptographically secure random generation source.
//
// NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed
// will derive to an unusable secret key. The ErrUnusable error will be
// returned if this should occur, so the caller must check for it and generate a
// new seed accordingly.
func NewMaster(seed []byte) (*ExtendedKey, error) {
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes {
return nil, ErrInvalidSeedLen
}
// First take the HMAC-SHA512 of the master key and the seed data:
// I = HMAC-SHA512(Key = "Bitcoin seed", Data = S)
hmac512 := hmac.New(sha512.New, masterKey)
hmac512.Write(seed)
lr := hmac512.Sum(nil)
// Split "I" into two 32-byte sequences Il and Ir where:
// Il = master secret key
// Ir = master chain code
secretKey := lr[:len(lr)/2]
chainCode := lr[len(lr)/2:]
// Ensure the key in usable.
secretKeyNum := new(big.Int).SetBytes(secretKey)
if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
parentFP := []byte{0x00, 0x00, 0x00, 0x00}
return newExtendedKey(btcnet.MainNetParams.HDPrivateKeyID[:], secretKey,
chainCode, parentFP, 0, 0, true), nil
}
示例12: BechmarkScalarBaseMult
// BechmarkScalarBaseMult benchmarks the secp256k1 curve ScalarBaseMult
// function.
func BechmarkScalarBaseMult(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
curve := btcec.S256()
for i := 0; i < b.N; i++ {
curve.ScalarBaseMult(k.Bytes())
}
}
示例13: Example_signMessage
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := btcwire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
//
// NOTE: This is commented out for the example since the signature
// produced uses random numbers and therefore will always be different.
//fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Signature Verified? true
}
示例14: TestPubKeys
func TestPubKeys(t *testing.T) {
for _, test := range pubKeyTests {
pk, err := btcec.ParsePubKey(test.key, btcec.S256())
if err != nil {
if test.isValid {
t.Errorf("%s pubkey failed when shouldn't %v",
test.name, err)
}
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
continue
}
var pkStr []byte
switch test.format {
case btcec.TstPubkeyUncompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed()
case btcec.TstPubkeyCompressed:
pkStr = (*btcec.PublicKey)(pk).SerializeCompressed()
case btcec.TstPubkeyHybrid:
pkStr = (*btcec.PublicKey)(pk).SerializeHybrid()
}
if !bytes.Equal(test.key, pkStr) {
t.Errorf("%s pubkey: serialized keys do not match.",
test.name)
spew.Dump(test.key)
spew.Dump(pkStr)
}
}
}
示例15: TestVectors
func TestVectors(t *testing.T) {
sha := sha1.New()
for i, test := range testVectors {
pub := ecdsa.PublicKey{
Curve: btcec.S256(),
X: fromHex(test.Qx),
Y: fromHex(test.Qy),
}
msg, _ := hex.DecodeString(test.msg)
sha.Reset()
sha.Write(msg)
hashed := sha.Sum(nil)
r := fromHex(test.r)
s := fromHex(test.s)
if fuck := ecdsa.Verify(&pub, hashed, r, s); fuck != test.ok {
//t.Errorf("%d: bad result %v %v", i, pub, hashed)
t.Errorf("%d: bad result %v instead of %v", i, fuck,
test.ok)
}
if testing.Short() {
break
}
}
}