本文整理匯總了Golang中github.com/cockroachdb/cockroach/sql/parser.ComparisonExpr類的典型用法代碼示例。如果您正苦於以下問題:Golang ComparisonExpr類的具體用法?Golang ComparisonExpr怎麽用?Golang ComparisonExpr使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ComparisonExpr類的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: encodeStartConstraintDescending
func encodeStartConstraintDescending(
spans []span, c *parser.ComparisonExpr) {
switch c.Operator {
case parser.Is:
// An IS NULL expressions allows us to constrain the start of the range
// to begin at NULL.
if c.Right != parser.DNull {
panic("Expected NULL operand for IS operator.")
}
for i := range spans {
spans[i].start = encoding.EncodeNullDescending(spans[i].start)
}
case parser.LE, parser.EQ:
if datum, ok := c.Right.(parser.Datum); ok {
key, pErr := encodeTableKey(nil, datum, encoding.Descending)
if pErr != nil {
panic(pErr)
}
// Append the constraint to all of the existing spans.
for i := range spans {
spans[i].start = append(spans[i].start, key...)
}
}
case parser.LT:
// A "<" constraint is the last start constraint. Since the constraint
// is exclusive and the start key is inclusive, we're going to apply
// a .PrefixEnd().
if datum, ok := c.Right.(parser.Datum); ok {
key, pErr := encodeTableKey(nil, datum, encoding.Descending)
if pErr != nil {
panic(pErr)
}
// Append the constraint to all of the existing spans.
for i := range spans {
spans[i].start = append(spans[i].start, key...)
spans[i].start = spans[i].start.PrefixEnd()
}
}
default:
panic(fmt.Errorf("unexpected operator: %s", c.String()))
}
}
示例2: simplifyComparisonExpr
func simplifyComparisonExpr(n *parser.ComparisonExpr) parser.Expr {
// NormalizeExpr will have left comparisons in the form "<var> <op>
// <datum>" unless they could not be simplified further in which case
// simplifyExpr cannot handle them. For example, "lower(a) = 'foo'"
if isVar(n.Left) && isDatum(n.Right) {
// All of the comparison operators have the property that when comparing to
// NULL they evaulate to NULL (see evalComparisonOp). NULL is not the same
// as false, but in the context of a WHERE clause, NULL is considered
// not-true which is the same as false.
if n.Right == parser.DNull {
return parser.DBool(false)
}
switch n.Operator {
case parser.EQ, parser.NE, parser.GT, parser.GE, parser.LT, parser.LE:
return n
case parser.In, parser.NotIn:
tuple, ok := n.Right.(parser.DTuple)
if !ok {
break
}
if !typeCheckTuple(n.Left, tuple) {
break
}
sort.Sort(tuple)
tuple = uniqTuple(tuple)
if len(tuple) == 0 {
return parser.DBool(false)
}
n.Right = tuple
return n
case parser.Like:
// a LIKE 'foo%' -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if i := strings.IndexAny(string(d), "_%"); i >= 0 {
return makePrefixRange(d[:i], n.Left, false)
}
return makePrefixRange(d, n.Left, true)
}
case parser.SimilarTo:
// a SIMILAR TO "foo.*" -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if re, err := regexp.Compile(string(d)); err == nil {
prefix, complete := re.LiteralPrefix()
return makePrefixRange(parser.DString(prefix), n.Left, complete)
}
}
}
}
return parser.DBool(true)
}
示例3: encodeEndConstraintDescending
func encodeEndConstraintDescending(spans []span, c *parser.ComparisonExpr,
isLastEndConstraint bool) {
switch c.Operator {
case parser.IsNot:
// An IS NULL expressions allows us to constrain the end of the range
// to stop at NULL.
if c.Right != parser.DNull {
panic("Expected NULL operand for IS NOT operator.")
}
for i := range spans {
spans[i].end = encoding.EncodeNotNullDescending(spans[i].end)
}
case parser.GE, parser.EQ:
datum := c.Right.(parser.Datum)
for i := range spans {
spans[i].end = encodeInclusiveEndValue(
spans[i].end, datum, encoding.Descending, isLastEndConstraint)
}
case parser.GT:
panic("'>' operators should have been transformed to '>='.")
default:
panic(fmt.Errorf("unexpected operator: %s", c.String()))
}
}
示例4: isMixedTypeComparison
func isMixedTypeComparison(c *parser.ComparisonExpr) bool {
switch c.Operator {
case parser.In, parser.NotIn:
tuple := *c.Right.(*parser.DTuple)
for _, expr := range tuple {
if !sameTypeExprs(c.TypedLeft(), expr.(parser.TypedExpr)) {
return true
}
}
return false
default:
return !sameTypeExprs(c.TypedLeft(), c.TypedRight())
}
}
示例5: simplifyComparisonExpr
func simplifyComparisonExpr(n *parser.ComparisonExpr) parser.Expr {
// NormalizeExpr will have left comparisons in the form "<var> <op>
// <datum>" unless they could not be simplified further in which case
// simplifyExpr cannot handle them. For example, "lower(a) = 'foo'"
if isVar(n.Left) && isDatum(n.Right) {
switch n.Operator {
case parser.EQ, parser.NE, parser.GT, parser.GE, parser.LT, parser.LE:
return n
case parser.In, parser.NotIn:
tuple, ok := n.Right.(parser.DTuple)
if !ok {
break
}
if !typeCheckTuple(n.Left, tuple) {
break
}
sort.Sort(tuple)
tuple = uniqTuple(tuple)
n.Right = tuple
return n
case parser.Like:
// a LIKE 'foo%' -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if i := strings.IndexAny(string(d), "_%"); i >= 0 {
return makePrefixRange(d[:i], n.Left, false)
}
return makePrefixRange(d, n.Left, true)
}
case parser.SimilarTo:
// a SIMILAR TO "foo.*" -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if re, err := regexp.Compile(string(d)); err == nil {
prefix, complete := re.LiteralPrefix()
return makePrefixRange(parser.DString(prefix), n.Left, complete)
}
}
}
}
return parser.DBool(true)
}
示例6: simplifyOneAndInExpr
func simplifyOneAndInExpr(left, right *parser.ComparisonExpr) (parser.TypedExpr, parser.TypedExpr) {
if left.Operator != parser.In && right.Operator != parser.In {
panic(fmt.Sprintf("IN expression required: %s vs %s", left, right))
}
origLeft, origRight := left, right
switch left.Operator {
case parser.EQ, parser.NE, parser.GT, parser.GE, parser.LT, parser.LE, parser.Is:
switch right.Operator {
case parser.In:
left, right = right, left
}
fallthrough
case parser.In:
ltuple := *left.Right.(*parser.DTuple)
switch right.Operator {
case parser.Is:
if right.Right == parser.DNull {
return parser.MakeDBool(false), nil
}
case parser.EQ, parser.NE, parser.GT, parser.GE, parser.LT, parser.LE:
// Our tuple will be sorted (see simplifyComparisonExpr). Binary search
// for the right datum.
datum := right.Right.(parser.Datum)
i := sort.Search(len(ltuple), func(i int) bool {
return ltuple[i].(parser.Datum).Compare(datum) >= 0
})
switch right.Operator {
case parser.EQ:
if i < len(ltuple) && ltuple[i].Compare(datum) == 0 {
return right, nil
}
return parser.MakeDBool(false), nil
case parser.NE:
if i < len(ltuple) && ltuple[i].Compare(datum) == 0 {
if len(ltuple) < 2 {
return parser.MakeDBool(false), nil
}
ltuple = remove(ltuple, i)
}
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
<uple,
), nil
case parser.GT:
if i < len(ltuple) {
if ltuple[i].Compare(datum) == 0 {
ltuple = ltuple[i+1:]
} else {
ltuple = ltuple[i:]
}
if len(ltuple) > 0 {
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
<uple,
), nil
}
}
return parser.MakeDBool(false), nil
case parser.GE:
if i < len(ltuple) {
ltuple = ltuple[i:]
if len(ltuple) > 0 {
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
<uple,
), nil
}
}
return parser.MakeDBool(false), nil
case parser.LT:
if i < len(ltuple) {
if i == 0 {
return parser.MakeDBool(false), nil
}
ltuple = ltuple[:i]
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
<uple,
), nil
}
return left, nil
case parser.LE:
if i < len(ltuple) {
if ltuple[i].Compare(datum) == 0 {
i++
}
//.........這裏部分代碼省略.........
示例7: simplifyComparisonExpr
func simplifyComparisonExpr(n *parser.ComparisonExpr) (parser.TypedExpr, bool) {
// NormalizeExpr will have left comparisons in the form "<var> <op>
// <datum>" unless they could not be simplified further in which case
// simplifyExpr cannot handle them. For example, "lower(a) = 'foo'"
left, right := n.TypedLeft(), n.TypedRight()
if isVar(left) && isDatum(right) {
if right == parser.DNull {
switch n.Operator {
case parser.IsNotDistinctFrom:
switch left.(type) {
case *qvalue, *parser.IndexedVar:
// Transform "a IS NOT DISTINCT FROM NULL" into "a IS NULL".
return parser.NewTypedComparisonExpr(
parser.Is,
left,
right,
), true
}
case parser.IsDistinctFrom:
switch left.(type) {
case *qvalue, *parser.IndexedVar:
// Transform "a IS DISTINCT FROM NULL" into "a IS NOT NULL".
return parser.NewTypedComparisonExpr(
parser.IsNot,
left,
right,
), true
}
case parser.Is, parser.IsNot:
switch left.(type) {
case *qvalue, *parser.IndexedVar:
// "a IS {,NOT} NULL" can be used during index selection to restrict
// the range of scanned keys.
return n, true
}
default:
// All of the remaining comparison operators have the property that when
// comparing to NULL they evaluate to NULL (see evalComparisonOp). NULL is
// not the same as false, but in the context of a WHERE clause, NULL is
// considered not-true which is the same as false.
return parser.MakeDBool(false), true
}
}
switch n.Operator {
case parser.EQ:
// Translate "(a, b) = (1, 2)" to "(a, b) IN ((1, 2))".
switch left.(type) {
case *parser.Tuple:
return parser.NewTypedComparisonExpr(
parser.In,
left,
&parser.DTuple{right.(parser.Datum)},
), true
}
return n, true
case parser.NE, parser.GE, parser.LE:
return n, true
case parser.GT:
// This simplification is necessary so that subsequent transformation of
// > constraint to >= can use Datum.Next without concern about whether a
// next value exists. Note that if the variable (n.Left) is NULL, this
// comparison would evaluate to NULL which is equivalent to false for a
// boolean expression.
if right.(parser.Datum).IsMax() {
return parser.MakeDBool(false), true
}
return n, true
case parser.LT:
// Note that if the variable is NULL, this would evaluate to NULL which
// would equivalent to false for a boolean expression.
if right.(parser.Datum).IsMin() {
return parser.MakeDBool(false), true
}
return n, true
case parser.In, parser.NotIn:
tuple := *right.(*parser.DTuple)
if len(tuple) == 0 {
return parser.MakeDBool(false), true
}
return n, true
case parser.Like:
// a LIKE 'foo%' -> a >= "foo" AND a < "fop"
if d, ok := right.(*parser.DString); ok {
if i := strings.IndexAny(string(*d), "_%"); i >= 0 {
return makePrefixRange((*d)[:i], left, false), false
}
return makePrefixRange(*d, left, true), false
}
// TODO(pmattis): Support parser.DBytes?
case parser.SimilarTo:
// a SIMILAR TO "foo.*" -> a >= "foo" AND a < "fop"
if d, ok := right.(*parser.DString); ok {
pattern := parser.SimilarEscape(string(*d))
if re, err := regexp.Compile(pattern); err == nil {
prefix, complete := re.LiteralPrefix()
return makePrefixRange(parser.DString(prefix), left, complete), false
}
}
// TODO(pmattis): Support parser.DBytes?
//.........這裏部分代碼省略.........
示例8: simplifyOneOrInExpr
func simplifyOneOrInExpr(left, right *parser.ComparisonExpr) (parser.TypedExpr, parser.TypedExpr) {
if left.Operator != parser.In && right.Operator != parser.In {
panic(fmt.Sprintf("IN expression required: %s vs %s", left, right))
}
origLeft, origRight := left, right
switch left.Operator {
case parser.EQ, parser.NE, parser.GT, parser.GE, parser.LT, parser.LE:
switch right.Operator {
case parser.In:
left, right = right, left
}
fallthrough
case parser.In:
tuple := *left.Right.(*parser.DTuple)
switch right.Operator {
case parser.EQ:
datum := right.Right.(parser.Datum)
// We keep the tuples for an IN expression in sorted order. So now we just
// merge the two sorted lists.
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
mergeSorted(tuple, parser.DTuple{datum}),
), nil
case parser.NE, parser.GT, parser.GE, parser.LT, parser.LE:
datum := right.Right.(parser.Datum)
i := sort.Search(len(tuple), func(i int) bool {
return tuple[i].(parser.Datum).Compare(datum) >= 0
})
switch right.Operator {
case parser.NE:
if i < len(tuple) && tuple[i].Compare(datum) == 0 {
return makeIsNotNull(right.TypedLeft()), nil
}
return right, nil
case parser.GT:
if i == 0 {
// datum >= tuple[0]
if tuple[i].Compare(datum) == 0 {
// datum = tuple[0]
return parser.NewTypedComparisonExpr(
parser.GE,
left.TypedLeft(),
datum,
), nil
}
return right, nil
}
case parser.GE:
if i == 0 {
// datum >= tuple[0]
return right, nil
}
case parser.LT:
if i == len(tuple) {
// datum > tuple[len(tuple)-1]
return right, nil
} else if i == len(tuple)-1 {
// datum >= tuple[len(tuple)-1]
if tuple[i].Compare(datum) == 0 {
// datum == tuple[len(tuple)-1]
return parser.NewTypedComparisonExpr(
parser.LE,
left.TypedLeft(),
datum,
), nil
}
}
case parser.LE:
if i == len(tuple) ||
(i == len(tuple)-1 && tuple[i].Compare(datum) == 0) {
// datum >= tuple[len(tuple)-1]
return right, nil
}
}
case parser.In:
// We keep the tuples for an IN expression in sorted order. So now we
// just merge the two sorted lists.
return parser.NewTypedComparisonExpr(
parser.In,
left.TypedLeft(),
mergeSorted(tuple, *right.Right.(*parser.DTuple)),
), nil
}
}
return origLeft, origRight
}
示例9: simplifyComparisonExpr
func simplifyComparisonExpr(n *parser.ComparisonExpr) parser.Expr {
// NormalizeExpr will have left comparisons in the form "<var> <op>
// <datum>" unless they could not be simplified further in which case
// simplifyExpr cannot handle them. For example, "lower(a) = 'foo'"
if isVar(n.Left) && isDatum(n.Right) {
// All of the comparison operators have the property that when comparing to
// NULL they evaulate to NULL (see evalComparisonOp). NULL is not the same
// as false, but in the context of a WHERE clause, NULL is considered
// not-true which is the same as false.
if n.Right == parser.DNull {
return parser.DBool(false)
}
switch n.Operator {
case parser.EQ, parser.NE, parser.GE, parser.LE:
return n
case parser.GT:
// This simplification is necessary so that subsequent transformation of
// > constraint to >= can use Datum.Next without concern about whether a
// next value exists. Note that if the variable (n.Left) is NULL, this
// comparison would evaluate to NULL which is equivalent to false for a
// boolean expression.
if n.Right.(parser.Datum).IsMax() {
return parser.DBool(false)
}
return n
case parser.LT:
// Note that if the variable is NULL, this would evaluate to NULL which
// would equivalent to false for a boolean expression.
if n.Right.(parser.Datum).IsMin() {
return parser.DBool(false)
}
return n
case parser.In, parser.NotIn:
tuple := n.Right.(parser.DTuple)
sort.Sort(tuple)
tuple = uniqTuple(tuple)
if len(tuple) == 0 {
return parser.DBool(false)
}
n.Right = tuple
return n
case parser.Like:
// a LIKE 'foo%' -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if i := strings.IndexAny(string(d), "_%"); i >= 0 {
return makePrefixRange(d[:i], n.Left, false)
}
return makePrefixRange(d, n.Left, true)
}
case parser.SimilarTo:
// a SIMILAR TO "foo.*" -> a >= "foo" AND a < "fop"
if d, ok := n.Right.(parser.DString); ok {
if re, err := regexp.Compile(string(d)); err == nil {
prefix, complete := re.LiteralPrefix()
return makePrefixRange(parser.DString(prefix), n.Left, complete)
}
}
}
}
return parser.DBool(true)
}