本文整理匯總了Golang中github.com/cockroachdb/cockroach/proto.Call類的典型用法代碼示例。如果您正苦於以下問題:Golang Call類的具體用法?Golang Call怎麽用?Golang Call使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Call類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: Send
// Send implements the client.Sender interface.
func (rls *retryableLocalSender) Send(_ context.Context, call proto.Call) {
// Instant retry to handle the case of a range split, which is
// exposed here as a RangeKeyMismatchError.
retryOpts := retry.Options{
Tag: fmt.Sprintf("routing %s locally", call.Method()),
}
// In local tests, the RPCs are not actually sent over the wire. We
// need to clone the Txn in order to avoid unexpected sharing
// between TxnCoordSender and client.Txn.
if header := call.Args.Header(); header.Txn != nil {
header.Txn = gogoproto.Clone(header.Txn).(*proto.Transaction)
}
err := retry.WithBackoff(retryOpts, func() (retry.Status, error) {
call.Reply.Header().Error = nil
rls.LocalSender.Send(context.TODO(), call)
// Check for range key mismatch error (this could happen if
// range was split between lookup and execution). In this case,
// reset header.Replica and engage retry loop.
if err := call.Reply.Header().GoError(); err != nil {
if _, ok := err.(*proto.RangeKeyMismatchError); ok {
// Clear request replica.
call.Args.Header().Replica = proto.Replica{}
return retry.Continue, err
}
}
return retry.Break, nil
})
if err != nil {
panic(fmt.Sprintf("local sender did not succeed: %s", err))
}
}
示例2: sendOne
func (db *testSender) sendOne(call proto.Call) {
switch call.Args.(type) {
case *proto.EndTransactionRequest:
safeSetGoError(call.Reply, util.Errorf("%s method not supported", call.Method()))
return
}
// Lookup range and direct request.
header := call.Args.Header()
if rng := db.store.LookupRange(header.Key, header.EndKey); rng != nil {
header.RangeID = rng.Desc().RangeID
replica := rng.GetReplica()
if replica == nil {
safeSetGoError(call.Reply, util.Errorf("own replica missing in range"))
}
header.Replica = *replica
reply, err := db.store.ExecuteCmd(context.Background(), call.Args)
if reply != nil {
gogoproto.Merge(call.Reply, reply)
}
if call.Reply.Header().Error != nil {
panic(proto.ErrorUnexpectedlySet)
}
if err != nil {
call.Reply.Header().SetGoError(err)
}
} else {
safeSetGoError(call.Reply, proto.NewRangeKeyMismatchError(header.Key, header.EndKey, nil))
}
}
示例3: Send
// Send implements the client.Sender interface. If the call is part
// of a transaction, the coordinator will initialize the transaction
// if it's not nil but has an empty ID.
func (tc *TxnCoordSender) Send(ctx context.Context, call proto.Call) {
header := call.Args.Header()
tc.maybeBeginTxn(header)
header.CmdID = header.GetOrCreateCmdID(tc.clock.PhysicalNow())
// This is the earliest point at which the request has a ClientCmdID and/or
// TxnID (if applicable). Begin a Trace which follows this request.
trace := tc.tracer.NewTrace(call.Args.Header())
defer trace.Finalize()
defer trace.Epoch(fmt.Sprintf("sending %s", call.Method()))()
defer func() {
if err := call.Reply.Header().GoError(); err != nil {
trace.Event(fmt.Sprintf("reply error: %T", err))
}
}()
ctx = tracer.ToCtx(ctx, trace)
// Process batch specially; otherwise, send via wrapped sender.
switch args := call.Args.(type) {
case *proto.BatchRequest:
trace.Event("batch processing")
tc.sendBatch(ctx, args, call.Reply.(*proto.BatchResponse))
default:
// TODO(tschottdorf): should treat all calls as Batch. After all, that
// will be almost all calls.
tc.sendOne(ctx, call)
}
}
示例4: sendBatch
// sendBatch unrolls a batched command and sends each constituent
// command in parallel.
// TODO(tschottdorf): modify sendBatch so that it sends truly parallel requests
// when outside of a Transaction. This can then be used to address the TODO in
// (*TxnCoordSender).resolve().
func (tc *TxnCoordSender) sendBatch(ctx context.Context, batchArgs *proto.BatchRequest, batchReply *proto.BatchResponse) {
// Prepare the calls by unrolling the batch. If the batchReply is
// pre-initialized with replies, use those; otherwise create replies
// as needed.
// TODO(spencer): send calls in parallel.
batchReply.Txn = batchArgs.Txn
for i := range batchArgs.Requests {
args := batchArgs.Requests[i].GetValue().(proto.Request)
if err := updateForBatch(args, batchArgs.RequestHeader); err != nil {
batchReply.Header().SetGoError(err)
return
}
call := proto.Call{Args: args}
// Create a reply from the method type and add to batch response.
if i >= len(batchReply.Responses) {
call.Reply = args.CreateReply()
batchReply.Add(call.Reply)
} else {
call.Reply = batchReply.Responses[i].GetValue().(proto.Response)
}
tc.sendOne(ctx, call)
// Amalgamate transaction updates and propagate first error, if applicable.
if batchReply.Txn != nil {
batchReply.Txn.Update(call.Reply.Header().Txn)
}
if call.Reply.Header().Error != nil {
batchReply.Error = call.Reply.Header().Error
return
}
}
}
示例5: post
// post posts the call using the HTTP client. The call's method is
// appended to KVDBEndpoint and set as the URL path. The call's arguments
// are protobuf-serialized and written as the POST body. The content
// type is set to application/x-protobuf.
//
// On success, the response body is unmarshalled into call.Reply.
func (s *httpSender) post(call proto.Call) error {
retryOpts := s.retryOpts
retryOpts.Tag = fmt.Sprintf("%s %s", s.context.RequestScheme(), call.Method())
// Marshal the args into a request body.
body, err := gogoproto.Marshal(call.Args)
if err != nil {
return err
}
url := s.context.RequestScheme() + "://" + s.server + KVDBEndpoint + call.Method().String()
return retry.WithBackoff(retryOpts, func() (retry.Status, error) {
req, err := http.NewRequest("POST", url, bytes.NewReader(body))
if err != nil {
return retry.Break, err
}
req.Header.Add(util.ContentTypeHeader, util.ProtoContentType)
req.Header.Add(util.AcceptHeader, util.ProtoContentType)
req.Header.Add(util.AcceptEncodingHeader, util.SnappyEncoding)
resp, err := s.client.Do(req)
if err != nil {
return retry.Continue, err
}
defer resp.Body.Close()
switch resp.StatusCode {
case http.StatusOK:
// We're cool.
case http.StatusServiceUnavailable, http.StatusGatewayTimeout, StatusTooManyRequests:
// Retry on service unavailable and request timeout.
// TODO(spencer): consider respecting the Retry-After header for
// backoff / retry duration.
return retry.Continue, errors.New(resp.Status)
default:
// Can't recover from all other errors.
return retry.Break, errors.New(resp.Status)
}
if resp.Header.Get(util.ContentEncodingHeader) == util.SnappyEncoding {
resp.Body = &snappyReader{body: resp.Body}
}
b, err := ioutil.ReadAll(resp.Body)
if err != nil {
return retry.Continue, err
}
if err := gogoproto.Unmarshal(b, call.Reply); err != nil {
return retry.Continue, err
}
return retry.Break, nil
})
}
示例6: Send
// Send implements the client.Sender interface. The store is looked
// up from the store map if specified by header.Replica; otherwise,
// the command is being executed locally, and the replica is
// determined via lookup through each store's LookupRange method.
func (ls *LocalSender) Send(ctx context.Context, call proto.Call) {
var err error
var store *storage.Store
trace := tracer.FromCtx(ctx)
// If we aren't given a Replica, then a little bending over
// backwards here. This case applies exclusively to unittests.
header := call.Args.Header()
if header.RaftID == 0 || header.Replica.StoreID == 0 {
var repl *proto.Replica
var raftID proto.RaftID
raftID, repl, err = ls.lookupReplica(header.Key, header.EndKey)
if err == nil {
header.RaftID = raftID
header.Replica = *repl
}
}
ctx = log.Add(ctx,
log.Method, call.Method(),
log.Key, header.Key,
log.RaftID, header.RaftID)
if err == nil {
store, err = ls.GetStore(header.Replica.StoreID)
}
var reply proto.Response
if err == nil {
// For calls that read data within a txn, we can avoid uncertainty
// related retries in certain situations. If the node is in
// "CertainNodes", we need not worry about uncertain reads any
// more. Setting MaxTimestamp=Timestamp for the operation
// accomplishes that. See proto.Transaction.CertainNodes for details.
if header.Txn != nil && header.Txn.CertainNodes.Contains(header.Replica.NodeID) {
// MaxTimestamp = Timestamp corresponds to no clock uncertainty.
trace.Event("read has no clock uncertainty")
header.Txn.MaxTimestamp = header.Txn.Timestamp
}
reply, err = store.ExecuteCmd(ctx, call.Args)
}
if reply != nil {
gogoproto.Merge(call.Reply, reply)
}
if call.Reply.Header().Error != nil {
panic(proto.ErrorUnexpectedlySet)
}
if err != nil {
call.Reply.Header().SetGoError(err)
}
}
示例7: sendBatch
// sendBatch unrolls a batched command and sends each constituent
// command in parallel.
func (tc *TxnCoordSender) sendBatch(batchArgs *proto.InternalBatchRequest, batchReply *proto.InternalBatchResponse) {
// Prepare the calls by unrolling the batch. If the batchReply is
// pre-initialized with replies, use those; otherwise create replies
// as needed.
// TODO(spencer): send calls in parallel.
batchReply.Txn = batchArgs.Txn
for i := range batchArgs.Requests {
args := batchArgs.Requests[i].GetValue().(proto.Request)
call := proto.Call{Args: args}
// Disallow transaction, user and priority on individual calls, unless
// equal.
if args.Header().User != "" && args.Header().User != batchArgs.User {
batchReply.Header().SetGoError(util.Error("cannot have individual user on call in batch"))
return
}
args.Header().User = batchArgs.User
if args.Header().UserPriority != nil && args.Header().GetUserPriority() != batchArgs.GetUserPriority() {
batchReply.Header().SetGoError(util.Error("cannot have individual user priority on call in batch"))
return
}
args.Header().UserPriority = batchArgs.UserPriority
if txn := args.Header().Txn; txn != nil && !txn.Equal(batchArgs.Txn) {
batchReply.Header().SetGoError(util.Error("cannot have individual transactional call in batch"))
return
}
// Propagate batch Txn to each call.
args.Header().Txn = batchArgs.Txn
// Create a reply from the method type and add to batch response.
if i >= len(batchReply.Responses) {
call.Reply = args.CreateReply()
batchReply.Add(call.Reply)
} else {
call.Reply = batchReply.Responses[i].GetValue().(proto.Response)
}
tc.sendOne(call)
// Amalgamate transaction updates and propagate first error, if applicable.
if batchReply.Txn != nil {
batchReply.Txn.Update(call.Reply.Header().Txn)
}
if call.Reply.Header().Error != nil {
batchReply.Error = call.Reply.Header().Error
return
}
}
}
示例8: Send
// Send implements the client.Sender interface. If the call is part
// of a transaction, the coordinator will initialize the transaction
// if it's not nil but has an empty ID.
func (tc *TxnCoordSender) Send(ctx context.Context, call proto.Call) {
header := call.Args.Header()
tc.maybeBeginTxn(header)
header.CmdID = header.GetOrCreateCmdID(tc.clock.PhysicalNow())
// This is the earliest point at which the request has a ClientCmdID and/or
// TxnID (if applicable). Begin a Trace which follows this request.
trace := tc.tracer.NewTrace(call.Args.Header())
defer trace.Finalize()
defer trace.Epoch(fmt.Sprintf("sending %s", call.Method()))()
defer func() {
if err := call.Reply.Header().GoError(); err != nil {
trace.Event(fmt.Sprintf("reply error: %T", err))
}
}()
ctx = tracer.ToCtx(ctx, trace)
// Process batch specially; otherwise, send via wrapped sender.
switch args := call.Args.(type) {
case *proto.InternalBatchRequest:
trace.Event("batch processing")
tc.sendBatch(ctx, args, call.Reply.(*proto.InternalBatchResponse))
case *proto.BatchRequest:
// Convert the batch request to internal-batch request.
internalArgs := &proto.InternalBatchRequest{RequestHeader: args.RequestHeader}
internalReply := &proto.InternalBatchResponse{}
for i := range args.Requests {
internalArgs.Add(args.Requests[i].GetValue().(proto.Request))
}
tc.sendBatch(ctx, internalArgs, internalReply)
reply := call.Reply.(*proto.BatchResponse)
reply.ResponseHeader = internalReply.ResponseHeader
// Convert from internal-batch response to batch response.
for i := range internalReply.Responses {
reply.Add(internalReply.Responses[i].GetValue().(proto.Response))
}
default:
tc.sendOne(ctx, call)
}
}
示例9: MaybeWrapCall
// MaybeWrapCall returns a new call which wraps the original Args and Reply
// in a batch, if necessary.
// TODO(tschottdorf): will go when proto.Call does.
func MaybeWrapCall(call proto.Call) (proto.Call, func(proto.Call) proto.Call) {
var unwrap func(proto.Response) proto.Response
call.Args, unwrap = MaybeWrap(call.Args)
newUnwrap := func(origReply proto.Response) func(proto.Call) proto.Call {
return func(newCall proto.Call) proto.Call {
origReply.Reset()
gogoproto.Merge(origReply, unwrap(newCall.Reply))
*origReply.Header() = *newCall.Reply.Header()
newCall.Reply = origReply
return newCall
}
}(call.Reply)
call.Reply = call.Args.CreateReply()
return call, newUnwrap
}
示例10: Send
// Send implements the client.Sender interface. It verifies
// permissions and looks up the appropriate range based on the
// supplied key and sends the RPC according to the specified options.
//
// If the request spans multiple ranges (which is possible for Scan or
// DeleteRange requests), Send sends requests to the individual ranges
// sequentially and combines the results transparently.
//
// This may temporarily adjust the request headers, so the proto.Call
// must not be used concurrently until Send has returned.
func (ds *DistSender) Send(_ context.Context, call proto.Call) {
args := call.Args
finalReply := call.Reply
// Verify permissions.
if err := ds.verifyPermissions(call.Args); err != nil {
call.Reply.Header().SetGoError(err)
return
}
// In the event that timestamp isn't set and read consistency isn't
// required, set the timestamp using the local clock.
if args.Header().ReadConsistency == proto.INCONSISTENT && args.Header().Timestamp.Equal(proto.ZeroTimestamp) {
// Make sure that after the call, args hasn't changed.
defer func(timestamp proto.Timestamp) {
args.Header().Timestamp = timestamp
}(args.Header().Timestamp)
args.Header().Timestamp = ds.clock.Now()
}
// If this is a bounded request, we will change its bound as we receive
// replies. This undoes that when we return.
boundedArgs, argsBounded := args.(proto.Bounded)
if argsBounded {
defer func(bound int64) {
boundedArgs.SetBound(bound)
}(boundedArgs.GetBound())
}
defer func(key proto.Key) {
args.Header().Key = key
}(args.Header().Key)
// Retry logic for lookup of range by key and RPCs to range replicas.
curReply := finalReply
for {
call.Reply = curReply
curReply.Header().Reset()
var desc, descNext *proto.RangeDescriptor
var err error
for r := retry.Start(ds.rpcRetryOptions); r.Next(); {
// Get range descriptor (or, when spanning range, descriptors).
// sendAttempt below may clear them on certain errors, so we
// refresh (likely from the cache) on every retry.
desc, descNext, err = ds.getDescriptors(call)
// getDescriptors may fail retryably if the first range isn't
// available via Gossip.
if err != nil {
if rErr, ok := err.(util.Retryable); ok && rErr.CanRetry() {
if log.V(1) {
log.Warning(err)
}
continue
}
break
}
err = func() error {
// Truncate the request to our current range, making sure not to
// touch it unless we have to (it is illegal to send EndKey on
// commands which do not operate on ranges).
if descNext != nil {
defer func(endKey proto.Key) {
args.Header().EndKey = endKey
}(args.Header().EndKey)
args.Header().EndKey = desc.EndKey
}
leader := ds.leaderCache.Lookup(proto.RaftID(desc.RaftID))
// Try to send the call.
replicas := newReplicaSlice(ds.gossip, desc)
// Rearrange the replicas so that those replicas with long common
// prefix of attributes end up first. If there's no prefix, this is a
// no-op.
order := ds.optimizeReplicaOrder(replicas)
// If this request needs to go to a leader and we know who that is, move
// it to the front.
if !(proto.IsRead(args) && args.Header().ReadConsistency == proto.INCONSISTENT) &&
leader.StoreID > 0 {
if i := replicas.FindReplica(leader.StoreID); i >= 0 {
replicas.MoveToFront(i)
order = rpc.OrderStable
}
}
return ds.sendRPC(desc.RaftID, replicas, order, args, curReply)
}()
//.........這裏部分代碼省略.........
示例11: sendOne
// sendOne sends a single call via the wrapped sender. If the call is
// part of a transaction, the TxnCoordSender adds the transaction to a
// map of active transactions and begins heartbeating it. Every
// subsequent call for the same transaction updates the lastUpdate
// timestamp to prevent live transactions from being considered
// abandoned and garbage collected. Read/write mutating requests have
// their key or key range added to the transaction's interval tree of
// key ranges for eventual cleanup via resolved write intents.
//
// On success, and if the call is part of a transaction, the affected
// key range is recorded as live intents for eventual cleanup upon
// transaction commit. Upon successful txn commit, initiates cleanup
// of intents.
func (tc *TxnCoordSender) sendOne(ctx context.Context, call proto.Call) {
var startNS int64
header := call.Args.Header()
trace := tracer.FromCtx(ctx)
var id string // optional transaction ID
if header.Txn != nil {
// If this call is part of a transaction...
id = string(header.Txn.ID)
// Verify that if this Transaction is not read-only, we have it on
// file. If not, refuse writes - the client must have issued a write on
// another coordinator previously.
if header.Txn.Writing && proto.IsTransactionWrite(call.Args) {
tc.Lock()
_, ok := tc.txns[id]
tc.Unlock()
if !ok {
call.Reply.Header().SetGoError(util.Errorf(
"transaction must not write on multiple coordinators"))
return
}
}
// Set the timestamp to the original timestamp for read-only
// commands and to the transaction timestamp for read/write
// commands.
if proto.IsReadOnly(call.Args) {
header.Timestamp = header.Txn.OrigTimestamp
} else {
header.Timestamp = header.Txn.Timestamp
}
if args, ok := call.Args.(*proto.EndTransactionRequest); ok {
// Remember when EndTransaction started in case we want to
// be linearizable.
startNS = tc.clock.PhysicalNow()
// EndTransaction must have its key set to that of the txn.
header.Key = header.Txn.Key
if len(args.Intents) > 0 {
// TODO(tschottdorf): it may be useful to allow this later.
// That would be part of a possible plan to allow txns which
// write on multiple coordinators.
call.Reply.Header().SetGoError(util.Errorf(
"client must not pass intents to EndTransaction"))
return
}
tc.Lock()
txnMeta, metaOK := tc.txns[id]
if id != "" && metaOK {
args.Intents = txnMeta.intents()
}
tc.Unlock()
if !metaOK {
// If we don't have the transaction, then this must be a retry
// by the client. We can no longer reconstruct a correct
// request so we must fail.
//
// TODO(bdarnell): if we had a GetTransactionStatus API then
// we could lookup the transaction and return either nil or
// TransactionAbortedError instead of this ambivalent error.
call.Reply.Header().SetGoError(util.Errorf(
"transaction is already committed or aborted"))
return
} else if len(args.Intents) == 0 {
// If there aren't any intents, then there's factually no
// transaction to end. Read-only txns have all of their state in
// the client.
call.Reply.Header().SetGoError(util.Errorf(
"cannot commit a read-only transaction"))
return
}
}
}
// Send the command through wrapped sender.
tc.wrapped.Send(ctx, call)
// For transactional calls, need to track & update the transaction.
if header.Txn != nil {
respHeader := call.Reply.Header()
if respHeader.Txn == nil {
// When empty, simply use the request's transaction.
// This is expected: the Range doesn't bother copying unless the
// object changes.
respHeader.Txn = gogoproto.Clone(header.Txn).(*proto.Transaction)
}
tc.updateResponseTxn(header, respHeader)
//.........這裏部分代碼省略.........
示例12: resolve
// resolve sends resolve intent commands for all key ranges this transaction
// has covered. Any keys listed in the resolved slice have already been
// resolved and are skipped.
func (tm *txnMetadata) resolve(trace *tracer.Trace, resolved []proto.Key, sender client.Sender) {
txn := &tm.txn
if tm.keys.Len() > 0 {
if log.V(2) {
log.Infof("cleaning up %d intent(s) for transaction %s", tm.keys.Len(), txn)
}
}
// TODO(tschottdorf): Should create a Batch here. However, we're resolving
// intents and if those are on meta records, there may be a certain order
// in which they need to be resolved so that they can get routed to the
// correct range. Since a batch runs its commands one by one and we don't
// know the correct order, we prefer to fire them off in parallel.
var wg sync.WaitGroup
for _, o := range tm.keys.GetOverlaps(proto.KeyMin, proto.KeyMax) {
// If the op was range based, end key != start key: resolve a range.
var call proto.Call
key := o.Key.Start().(proto.Key)
endKey := o.Key.End().(proto.Key)
if !key.Next().Equal(endKey) {
call.Args = &proto.InternalResolveIntentRangeRequest{
RequestHeader: proto.RequestHeader{
Timestamp: txn.Timestamp,
Key: key,
EndKey: endKey,
User: security.RootUser,
Txn: txn,
},
}
call.Reply = &proto.InternalResolveIntentRangeResponse{}
} else {
// Check if the key has already been resolved; skip if yes.
found := false
for _, k := range resolved {
if key.Equal(k) {
if log.V(2) {
log.Warningf("skipping previously resolved intent at %q", k)
}
found = true
}
}
if found {
continue
}
call.Args = &proto.InternalResolveIntentRequest{
RequestHeader: proto.RequestHeader{
Timestamp: txn.Timestamp,
Key: key,
User: security.RootUser,
Txn: txn,
},
}
call.Reply = &proto.InternalResolveIntentResponse{}
}
ctx := tracer.ToCtx(context.Background(), trace.Fork())
if log.V(2) {
log.Infof("cleaning up intent %q for txn %s", call.Args.Header().Key, txn)
}
// Each operation gets their own goroutine. We only want to return to
// the caller after the operations have finished.
wg.Add(1)
go func() {
sender.Send(ctx, call)
wg.Done()
if call.Reply.Header().Error != nil {
log.Warningf("failed to cleanup %q intent: %s", call.Args.Header().Key, call.Reply.Header().GoError())
}
}()
}
defer trace.Epoch("waiting for intent resolution")()
wg.Wait()
tm.keys.Clear()
}
示例13: Send
// Send implements the client.Sender interface. It verifies
// permissions and looks up the appropriate range based on the
// supplied key and sends the RPC according to the specified options.
//
// If the request spans multiple ranges (which is possible for Scan or
// DeleteRange requests), Send sends requests to the individual ranges
// sequentially and combines the results transparently.
//
// This may temporarily adjust the request headers, so the proto.Call
// must not be used concurrently until Send has returned.
func (ds *DistSender) Send(_ context.Context, call proto.Call) {
args := call.Args
finalReply := call.Reply
endKey := args.Header().EndKey
// Verify permissions.
if err := ds.verifyPermissions(call.Args); err != nil {
call.Reply.Header().SetGoError(err)
return
}
// In the event that timestamp isn't set and read consistency isn't
// required, set the timestamp using the local clock.
if args.Header().ReadConsistency == proto.INCONSISTENT && args.Header().Timestamp.Equal(proto.ZeroTimestamp) {
// Make sure that after the call, args hasn't changed.
defer func(timestamp proto.Timestamp) {
args.Header().Timestamp = timestamp
}(args.Header().Timestamp)
args.Header().Timestamp = ds.clock.Now()
}
// If this is a bounded request, we will change its bound as we receive
// replies. This undoes that when we return.
boundedArgs, _ := args.(proto.Bounded)
if boundedArgs != nil {
defer func(n int64) {
boundedArgs.SetBound(n)
}(boundedArgs.GetBound())
}
// Retry logic for lookup of range by key and RPCs to range replicas.
retryOpts := ds.rpcRetryOptions
retryOpts.Tag = "routing " + call.Method().String() + " rpc"
curReply := finalReply
for {
call.Reply = curReply
curReply.Header().Reset()
var desc, descNext *proto.RangeDescriptor
err := retry.WithBackoff(retryOpts, func() (retry.Status, error) {
var err error
// Get range descriptor (or, when spanning range, descriptors).
// sendAttempt below may clear them on certain errors, so we
// refresh (likely from the cache) on every retry.
desc, descNext, err = ds.getDescriptors(call)
// getDescriptors may fail retryably if the first range isn't
// available via Gossip.
if err != nil {
if rErr, ok := err.(util.Retryable); ok && rErr.CanRetry() {
return retry.Continue, err
}
return retry.Break, err
}
// Truncate the request to our current range, making sure not to
// touch it unless we have to (it is illegal to send EndKey on
// commands which do not operate on ranges).
if descNext != nil {
args.Header().EndKey = desc.EndKey
defer func() {
// "Untruncate" EndKey to original.
args.Header().EndKey = endKey
}()
}
return ds.sendAttempt(desc, call)
})
// Immediately return if querying a range failed non-retryably.
// For multi-range requests, we return the failing range's reply.
if err != nil {
call.Reply.Header().SetGoError(err)
return
}
if finalReply != curReply {
// This was the second or later call in a multi-range request.
// Combine the new response with the existing one.
if cFinalReply, ok := finalReply.(proto.Combinable); ok {
cFinalReply.Combine(curReply)
} else {
// This should never apply in practice, as we'll only end up here
// for range-spanning requests.
call.Reply.Header().SetGoError(util.Errorf("multi-range request with non-combinable response type"))
return
}
}
// If this request has a bound, such as MaxResults in
// ScanRequest, check whether enough rows have been retrieved.
//.........這裏部分代碼省略.........
示例14: Send
// Send sends call to Cockroach via an HTTP post. HTTP response codes
// which are retryable are retried with backoff in a loop using the
// default retry options.
func (s *httpSender) Send(_ context.Context, call proto.Call) {
if err := HTTPPost(s.ctx, call.Args, call.Reply, call.Method()); err != nil {
call.Reply.Header().SetGoError(err)
}
}
示例15: sendAttempt
// sendAttempt is invoked by Send and handles retry logic and cache eviction
// for a call sent to a single range. It returns a retry status, which is Break
// on success and either Break, Continue or Reset depending on error condition.
// This method is expected to be invoked from within a backoff / retry loop to
// retry the send repeatedly (e.g. to continue processing after a critical node
// becomes available after downtime or the range descriptor is refreshed via
// lookup).
func (ds *DistSender) sendAttempt(desc *proto.RangeDescriptor, call proto.Call) (retry.Status, error) {
leader := ds.leaderCache.Lookup(proto.RaftID(desc.RaftID))
// Try to send the call.
replicas := newReplicaSlice(ds.gossip, desc)
// Rearrange the replicas so that those replicas with long common
// prefix of attributes end up first. If there's no prefix, this is a
// no-op.
order := ds.optimizeReplicaOrder(replicas)
args := call.Args
reply := call.Reply
// If this request needs to go to a leader and we know who that is, move
// it to the front.
if !(proto.IsRead(args) && args.Header().ReadConsistency == proto.INCONSISTENT) &&
leader.StoreID > 0 {
if i := replicas.FindReplica(leader.StoreID); i >= 0 {
replicas.MoveToFront(i)
order = rpc.OrderStable
}
}
err := ds.sendRPC(desc.RaftID, replicas, order, args, reply)
if err != nil {
// For an RPC error to occur, we must've been unable to contact any
// replicas. In this case, likely all nodes are down (or not getting back
// to us within a reasonable amount of time).
// We may simply not be trying to talk to the up-to-date replicas, so
// clearing the descriptor here should be a good idea.
// TODO(tschottdorf): If a replica group goes dead, this will cause clients
// to put high read pressure on the first range, so there should be some
// rate limiting here.
ds.rangeCache.EvictCachedRangeDescriptor(args.Header().Key, desc)
} else {
err = reply.Header().GoError()
}
if err != nil {
if log.V(1) {
log.Warningf("failed to invoke %s: %s", call.Method(), err)
}
// If retryable, allow retry. For range not found or range
// key mismatch errors, we don't backoff on the retry,
// but reset the backoff loop so we can retry immediately.
switch tErr := err.(type) {
case *proto.RangeNotFoundError, *proto.RangeKeyMismatchError:
// Range descriptor might be out of date - evict it.
ds.rangeCache.EvictCachedRangeDescriptor(args.Header().Key, desc)
// On addressing errors, don't backoff; retry immediately.
return retry.Reset, err
case *proto.NotLeaderError:
newLeader := tErr.GetLeader()
// Verify that leader is a known replica according to the
// descriptor. If not, we've got a stale replica; evict cache.
// Next, cache the new leader.
if newLeader != nil {
if i, _ := desc.FindReplica(newLeader.StoreID); i == -1 {
if log.V(1) {
log.Infof("error indicates unknown leader %s, expunging descriptor %s", newLeader, desc)
}
ds.rangeCache.EvictCachedRangeDescriptor(args.Header().Key, desc)
}
} else {
newLeader = &proto.Replica{}
}
ds.updateLeaderCache(proto.RaftID(desc.RaftID), *newLeader)
return retry.Reset, err
case util.Retryable:
if tErr.CanRetry() {
return retry.Continue, err
}
}
return retry.Break, err
}
return retry.Break, nil
}