本文整理匯總了Golang中github.com/cockroachdb/cockroach/pkg/roachpb.BatchRequest.RangeID方法的典型用法代碼示例。如果您正苦於以下問題:Golang BatchRequest.RangeID方法的具體用法?Golang BatchRequest.RangeID怎麽用?Golang BatchRequest.RangeID使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/cockroachdb/cockroach/pkg/roachpb.BatchRequest
的用法示例。
在下文中一共展示了BatchRequest.RangeID方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: sendRPC
// sendRPC sends one or more RPCs to replicas from the supplied
// roachpb.Replica slice. Returns an RPC error if the request could
// not be sent. Note that the reply may contain a higher level error
// and must be checked in addition to the RPC error.
//
// The replicas are assumed to be ordered by preference, with closer
// ones (i.e. expected lowest latency) first.
func (ds *DistSender) sendRPC(
ctx context.Context, rangeID roachpb.RangeID, replicas ReplicaSlice, ba roachpb.BatchRequest,
) (*roachpb.BatchResponse, error) {
if len(replicas) == 0 {
return nil, roachpb.NewSendError(
fmt.Sprintf("no replica node addresses available via gossip for range %d", rangeID))
}
// TODO(pmattis): This needs to be tested. If it isn't set we'll
// still route the request appropriately by key, but won't receive
// RangeNotFoundErrors.
ba.RangeID = rangeID
// Set RPC opts with stipulation that one of N RPCs must succeed.
rpcOpts := SendOptions{
ctx: ctx,
SendNextTimeout: ds.sendNextTimeout,
transportFactory: ds.transportFactory,
}
tracing.AnnotateTrace()
defer tracing.AnnotateTrace()
reply, err := ds.sendToReplicas(rpcOpts, rangeID, replicas, ba, ds.rpcContext)
if err != nil {
return nil, err
}
return reply, nil
}
示例2: Send
// Send implements the client.Sender interface. The store is looked up from the
// store map if specified by the request; otherwise, the command is being
// executed locally, and the replica is determined via lookup through each
// store's LookupRange method. The latter path is taken only by unit tests.
func (ls *Stores) Send(
ctx context.Context, ba roachpb.BatchRequest,
) (*roachpb.BatchResponse, *roachpb.Error) {
// If we aren't given a Replica, then a little bending over
// backwards here. This case applies exclusively to unittests.
if ba.RangeID == 0 || ba.Replica.StoreID == 0 {
rs, err := keys.Range(ba)
if err != nil {
return nil, roachpb.NewError(err)
}
rangeID, repDesc, err := ls.LookupReplica(rs.Key, rs.EndKey)
if err != nil {
return nil, roachpb.NewError(err)
}
ba.RangeID = rangeID
ba.Replica = repDesc
}
store, err := ls.GetStore(ba.Replica.StoreID)
if err != nil {
return nil, roachpb.NewError(err)
}
if ba.Txn != nil {
// For calls that read data within a txn, we keep track of timestamps
// observed from the various participating nodes' HLC clocks. If we have
// a timestamp on file for this Node which is smaller than MaxTimestamp,
// we can lower MaxTimestamp accordingly. If MaxTimestamp drops below
// OrigTimestamp, we effectively can't see uncertainty restarts any
// more.
// Note that it's not an issue if MaxTimestamp propagates back out to
// the client via a returned Transaction update - when updating a Txn
// from another, the larger MaxTimestamp wins.
if maxTS, ok := ba.Txn.GetObservedTimestamp(ba.Replica.NodeID); ok && maxTS.Less(ba.Txn.MaxTimestamp) {
// Copy-on-write to protect others we might be sharing the Txn with.
shallowTxn := *ba.Txn
// The uncertainty window is [OrigTimestamp, maxTS), so if that window
// is empty, there won't be any uncertainty restarts.
if !ba.Txn.OrigTimestamp.Less(maxTS) {
log.Event(ctx, "read has no clock uncertainty")
}
shallowTxn.MaxTimestamp.Backward(maxTS)
ba.Txn = &shallowTxn
}
}
br, pErr := store.Send(ctx, ba)
if br != nil && br.Error != nil {
panic(roachpb.ErrorUnexpectedlySet(store, br))
}
return br, pErr
}
示例3: process
// process iterates through all keys in a replica's range, calling the garbage
// collector for each key and associated set of values. GC'd keys are batched
// into GC calls. Extant intents are resolved if intents are older than
// intentAgeThreshold. The transaction and abort cache records are also
// scanned and old entries evicted. During normal operation, both of these
// records are cleaned up when their respective transaction finishes, so the
// amount of work done here is expected to be small.
//
// Some care needs to be taken to avoid cyclic recreation of entries during GC:
// * a Push initiated due to an intent may recreate a transaction entry
// * resolving an intent may write a new abort cache entry
// * obtaining the transaction for a abort cache entry requires a Push
//
// The following order is taken below:
// 1) collect all intents with sufficiently old txn record
// 2) collect these intents' transactions
// 3) scan the transaction table, collecting abandoned or completed txns
// 4) push all of these transactions (possibly recreating entries)
// 5) resolve all intents (unless the txn is still PENDING), which will recreate
// abort cache entries (but with the txn timestamp; i.e. likely gc'able)
// 6) scan the abort cache table for old entries
// 7) push these transactions (again, recreating txn entries).
// 8) send a GCRequest.
func (gcq *gcQueue) process(
ctx context.Context, now hlc.Timestamp, repl *Replica, sysCfg config.SystemConfig,
) error {
snap := repl.store.Engine().NewSnapshot()
desc := repl.Desc()
defer snap.Close()
// Lookup the GC policy for the zone containing this key range.
zone, err := sysCfg.GetZoneConfigForKey(desc.StartKey)
if err != nil {
return errors.Errorf("could not find zone config for range %s: %s", repl, err)
}
gcKeys, info, err := RunGC(ctx, desc, snap, now, zone.GC,
func(now hlc.Timestamp, txn *roachpb.Transaction, typ roachpb.PushTxnType) {
pushTxn(ctx, gcq.store.DB(), now, txn, typ)
},
func(intents []roachpb.Intent, poison bool, wait bool) error {
return repl.store.intentResolver.resolveIntents(ctx, intents, poison, wait)
})
if err != nil {
return err
}
log.VEventf(ctx, 1, "completed with stats %+v", info)
info.updateMetrics(gcq.store.metrics)
var ba roachpb.BatchRequest
var gcArgs roachpb.GCRequest
// TODO(tschottdorf): This is one of these instances in which we want
// to be more careful that the request ends up on the correct Replica,
// and we might have to worry about mixing range-local and global keys
// in a batch which might end up spanning Ranges by the time it executes.
gcArgs.Key = desc.StartKey.AsRawKey()
gcArgs.EndKey = desc.EndKey.AsRawKey()
gcArgs.Keys = gcKeys
gcArgs.Threshold = info.Threshold
gcArgs.TxnSpanGCThreshold = info.TxnSpanGCThreshold
// Technically not needed since we're talking directly to the Range.
ba.RangeID = desc.RangeID
ba.Timestamp = now
ba.Add(&gcArgs)
if _, pErr := repl.Send(ctx, ba); pErr != nil {
log.ErrEvent(ctx, pErr.String())
return pErr.GoError()
}
return nil
}
示例4: InitOrJoinRequest
// InitOrJoinRequest executes a RequestLease command asynchronously and returns a
// channel on which the result will be posted. If there's already a request in
// progress, we join in waiting for the results of that request.
// It is an error to call InitOrJoinRequest() while a request is in progress
// naming another replica as lease holder.
//
// replica is used to schedule and execute async work (proposing a RequestLease
// command). replica.mu is locked when delivering results, so calls from the
// replica happen either before or after a result for a pending request has
// happened.
//
// transfer needs to be set if the request represents a lease transfer (as
// opposed to an extension, or acquiring the lease when none is held).
//
// Note: Once this function gets a context to be used for cancellation, instead
// of replica.store.Stopper().ShouldQuiesce(), care will be needed for cancelling
// the Raft command, similar to replica.addWriteCmd.
func (p *pendingLeaseRequest) InitOrJoinRequest(
replica *Replica,
nextLeaseHolder roachpb.ReplicaDescriptor,
timestamp hlc.Timestamp,
startKey roachpb.Key,
transfer bool,
) <-chan *roachpb.Error {
if nextLease, ok := p.RequestPending(); ok {
if nextLease.Replica.ReplicaID == nextLeaseHolder.ReplicaID {
// Join a pending request asking for the same replica to become lease
// holder.
return p.JoinRequest()
}
llChan := make(chan *roachpb.Error, 1)
// We can't join the request in progress.
llChan <- roachpb.NewErrorf("request for different replica in progress "+
"(requesting: %+v, in progress: %+v)",
nextLeaseHolder.ReplicaID, nextLease.Replica.ReplicaID)
return llChan
}
llChan := make(chan *roachpb.Error, 1)
// No request in progress. Let's propose a Lease command asynchronously.
// TODO(tschottdorf): get duration from configuration, either as a
// config flag or, later, dynamically adjusted.
startStasis := timestamp.Add(int64(replica.store.cfg.RangeLeaseActiveDuration), 0)
expiration := startStasis.Add(int64(replica.store.Clock().MaxOffset()), 0)
reqSpan := roachpb.Span{
Key: startKey,
}
var leaseReq roachpb.Request
now := replica.store.Clock().Now()
reqLease := roachpb.Lease{
Start: timestamp,
StartStasis: startStasis,
Expiration: expiration,
Replica: nextLeaseHolder,
ProposedTS: &now,
}
if transfer {
leaseReq = &roachpb.TransferLeaseRequest{
Span: reqSpan,
Lease: reqLease,
}
} else {
leaseReq = &roachpb.RequestLeaseRequest{
Span: reqSpan,
Lease: reqLease,
}
}
if replica.store.Stopper().RunAsyncTask(context.TODO(), func(ctx context.Context) {
ctx = replica.AnnotateCtx(ctx)
// Propose a RequestLease command and wait for it to apply.
ba := roachpb.BatchRequest{}
ba.Timestamp = replica.store.Clock().Now()
ba.RangeID = replica.RangeID
ba.Add(leaseReq)
if log.V(2) {
log.Infof(ctx, "sending lease request %v", leaseReq)
}
_, pErr := replica.Send(ctx, ba)
// We reset our state below regardless of whether we've gotten an error or
// not, but note that an error is ambiguous - there's no guarantee that the
// transfer will not still apply. That's OK, however, as the "in transfer"
// state maintained by the pendingLeaseRequest is not relied on for
// correctness (see replica.mu.minLeaseProposedTS), and resetting the state
// is beneficial as it'll allow the replica to attempt to transfer again or
// extend the existing lease in the future.
// Send result of lease to all waiter channels.
replica.mu.Lock()
defer replica.mu.Unlock()
for _, llChan := range p.llChans {
// Don't send the same transaction object twice; this can lead to races.
if pErr != nil {
pErrClone := *pErr
pErrClone.SetTxn(pErr.GetTxn())
llChan <- &pErrClone
} else {
llChan <- nil
}
}
p.llChans = p.llChans[:0]
p.nextLease = roachpb.Lease{}
//.........這裏部分代碼省略.........
示例5: InitOrJoinRequest
// InitOrJoinRequest executes a RequestLease command asynchronously and returns a
// channel on which the result will be posted. If there's already a request in
// progress, we join in waiting for the results of that request.
// It is an error to call InitOrJoinRequest() while a request is in progress
// naming another replica as lease holder.
//
// replica is used to schedule and execute async work (proposing a RequestLease
// command). replica.mu is locked when delivering results, so calls from the
// replica happen either before or after a result for a pending request has
// happened.
//
// transfer needs to be set if the request represents a lease transfer (as
// opposed to an extension, or acquiring the lease when none is held).
//
// Note: Once this function gets a context to be used for cancellation, instead
// of replica.store.Stopper().ShouldQuiesce(), care will be needed for cancelling
// the Raft command, similar to replica.addWriteCmd.
func (p *pendingLeaseRequest) InitOrJoinRequest(
replica *Replica,
nextLeaseHolder roachpb.ReplicaDescriptor,
timestamp hlc.Timestamp,
startKey roachpb.Key,
transfer bool,
) <-chan *roachpb.Error {
if nextLease, ok := p.RequestPending(); ok {
if nextLease.Replica.ReplicaID == nextLeaseHolder.ReplicaID {
// Join a pending request asking for the same replica to become lease
// holder.
return p.JoinRequest()
}
llChan := make(chan *roachpb.Error, 1)
// We can't join the request in progress.
llChan <- roachpb.NewErrorf("request for different replica in progress "+
"(requesting: %+v, in progress: %+v)",
nextLeaseHolder.ReplicaID, nextLease.Replica.ReplicaID)
return llChan
}
llChan := make(chan *roachpb.Error, 1)
// No request in progress. Let's propose a Lease command asynchronously.
// TODO(tschottdorf): get duration from configuration, either as a
// config flag or, later, dynamically adjusted.
startStasis := timestamp.Add(int64(replica.store.cfg.RangeLeaseActiveDuration), 0)
expiration := startStasis.Add(int64(replica.store.Clock().MaxOffset()), 0)
reqSpan := roachpb.Span{
Key: startKey,
}
var leaseReq roachpb.Request
reqLease := roachpb.Lease{
Start: timestamp,
StartStasis: startStasis,
Expiration: expiration,
Replica: nextLeaseHolder,
}
if transfer {
leaseReq = &roachpb.TransferLeaseRequest{
Span: reqSpan,
Lease: reqLease,
}
} else {
leaseReq = &roachpb.RequestLeaseRequest{
Span: reqSpan,
Lease: reqLease,
}
}
if replica.store.Stopper().RunAsyncTask(context.TODO(), func(ctx context.Context) {
ctx = replica.AnnotateCtx(ctx)
// Propose a RequestLease command and wait for it to apply.
ba := roachpb.BatchRequest{}
ba.Timestamp = replica.store.Clock().Now()
ba.RangeID = replica.RangeID
ba.Add(leaseReq)
if log.V(2) {
log.Infof(ctx, "sending lease request %v", leaseReq)
}
_, pErr := replica.Send(ctx, ba)
// Send result of lease to all waiter channels.
replica.mu.Lock()
defer replica.mu.Unlock()
for i, llChan := range p.llChans {
// Don't send the same pErr object twice; this can lead to races. We could
// clone every time but it's more efficient to send pErr itself to one of
// the channels (the last one; if we send it earlier the race can still
// happen).
if i == len(p.llChans)-1 {
llChan <- pErr
} else {
llChan <- protoutil.Clone(pErr).(*roachpb.Error) // works with `nil`
}
}
p.llChans = p.llChans[:0]
p.nextLease = roachpb.Lease{}
}) != nil {
// We failed to start the asynchronous task. Send a blank NotLeaseHolderError
// back to indicate that we have no idea who the range lease holder might
// be; we've withdrawn from active duty.
llChan <- roachpb.NewError(
newNotLeaseHolderError(nil, replica.store.StoreID(), replica.mu.state.Desc))
return llChan
}
//.........這裏部分代碼省略.........
示例6: requestLeaseAsync
// requestLeaseAsync sends a transfer lease or lease request to the
// specified replica. The request is sent in an async task.
func (p *pendingLeaseRequest) requestLeaseAsync(
repl *Replica,
nextLeaseHolder roachpb.ReplicaDescriptor,
reqLease roachpb.Lease,
status LeaseStatus,
leaseReq roachpb.Request,
) error {
return repl.store.Stopper().RunAsyncTask(context.TODO(), func(ctx context.Context) {
ctx = repl.AnnotateCtx(ctx)
var pErr *roachpb.Error
// If requesting an epoch-based lease & current state is expired,
// potentially heartbeat our own liveness or increment epoch of
// prior owner. Note we only do this if the previous lease was
// epoch-based.
if reqLease.Type() == roachpb.LeaseEpoch && status.state == leaseExpired &&
status.lease.Type() == roachpb.LeaseEpoch {
var err error
// If this replica is previous & next lease holder, manually heartbeat to become live.
if status.lease.OwnedBy(nextLeaseHolder.StoreID) &&
repl.store.StoreID() == nextLeaseHolder.StoreID {
if err = repl.store.cfg.NodeLiveness.Heartbeat(ctx, status.liveness); err != nil {
log.Error(ctx, err)
}
} else if status.liveness.Epoch == *status.lease.Epoch {
// If not owner, increment epoch if necessary to invalidate lease.
if err = repl.store.cfg.NodeLiveness.IncrementEpoch(ctx, status.liveness); err != nil {
log.Error(ctx, err)
}
}
// Set error for propagation to all waiters below.
if err != nil {
pErr = roachpb.NewError(newNotLeaseHolderError(status.lease, repl.store.StoreID(), repl.Desc()))
}
}
// Propose a RequestLease command and wait for it to apply.
if pErr == nil {
ba := roachpb.BatchRequest{}
ba.Timestamp = repl.store.Clock().Now()
ba.RangeID = repl.RangeID
ba.Add(leaseReq)
_, pErr = repl.Send(ctx, ba)
}
// We reset our state below regardless of whether we've gotten an error or
// not, but note that an error is ambiguous - there's no guarantee that the
// transfer will not still apply. That's OK, however, as the "in transfer"
// state maintained by the pendingLeaseRequest is not relied on for
// correctness (see repl.mu.minLeaseProposedTS), and resetting the state
// is beneficial as it'll allow the replica to attempt to transfer again or
// extend the existing lease in the future.
// Send result of lease to all waiter channels.
repl.mu.Lock()
defer repl.mu.Unlock()
for _, llChan := range p.llChans {
// Don't send the same transaction object twice; this can lead to races.
if pErr != nil {
pErrClone := *pErr
pErrClone.SetTxn(pErr.GetTxn())
llChan <- &pErrClone
} else {
llChan <- nil
}
}
p.llChans = p.llChans[:0]
p.nextLease = roachpb.Lease{}
})
}