本文整理匯總了Golang中github.com/btcsuite/btcutil.NewTx函數的典型用法代碼示例。如果您正苦於以下問題:Golang NewTx函數的具體用法?Golang NewTx怎麽用?Golang NewTx使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了NewTx函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: CreateTxChain
// CreateTxChain creates a chain of zero-fee transactions (each subsequent
// transaction spends the entire amount from the previous one) with the first
// one spending the provided outpoint. Each transaction spends the entire
// amount of the previous one and as such does not include any fees.
func (p *poolHarness) CreateTxChain(firstOutput spendableOutput, numTxns uint32) ([]*btcutil.Tx, error) {
txChain := make([]*btcutil.Tx, 0, numTxns)
prevOutPoint := firstOutput.outPoint
spendableAmount := firstOutput.amount
for i := uint32(0); i < numTxns; i++ {
// Create the transaction using the previous transaction output
// and paying the full amount to the payment address associated
// with the harness.
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: prevOutPoint,
SignatureScript: nil,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: int64(spendableAmount),
})
// Sign the new transaction.
sigScript, err := txscript.SignatureScript(tx, 0, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[0].SignatureScript = sigScript
txChain = append(txChain, btcutil.NewTx(tx))
// Next transaction uses outputs from this one.
prevOutPoint = wire.OutPoint{Hash: tx.TxHash(), Index: 0}
}
return txChain, nil
}
示例2: makeUtxoView
// makeUtxoView creates a mock unspent transaction output view by using the
// transaction index in order to look up all inputs referenced by the
// transactions in the block. This is sometimes needed when catching indexes up
// because many of the txouts could actually already be spent however the
// associated scripts are still required to index them.
func makeUtxoView(dbTx database.Tx, block *btcutil.Block) (*blockchain.UtxoViewpoint, error) {
view := blockchain.NewUtxoViewpoint()
for txIdx, tx := range block.Transactions() {
// Coinbases do not reference any inputs. Since the block is
// required to have already gone through full validation, it has
// already been proven on the first transaction in the block is
// a coinbase.
if txIdx == 0 {
continue
}
// Use the transaction index to load all of the referenced
// inputs and add their outputs to the view.
for _, txIn := range tx.MsgTx().TxIn {
originOut := &txIn.PreviousOutPoint
originTx, err := dbFetchTx(dbTx, &originOut.Hash)
if err != nil {
return nil, err
}
view.AddTxOuts(btcutil.NewTx(originTx), 0)
}
}
return view, nil
}
示例3: createCoinbaseTx
// createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy
// based on the passed block height to the provided address. When the address
// is nil, the coinbase transaction will instead be redeemable by anyone.
//
// See the comment for NewBlockTemplate for more information about why the nil
// address handling is useful.
func createCoinbaseTx(params *chaincfg.Params, coinbaseScript []byte, nextBlockHeight int32, addr btcutil.Address) (*btcutil.Tx, error) {
// Create the script to pay to the provided payment address if one was
// specified. Otherwise create a script that allows the coinbase to be
// redeemable by anyone.
var pkScript []byte
if addr != nil {
var err error
pkScript, err = txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
} else {
var err error
scriptBuilder := txscript.NewScriptBuilder()
pkScript, err = scriptBuilder.AddOp(txscript.OP_TRUE).Script()
if err != nil {
return nil, err
}
}
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
Value: blockchain.CalcBlockSubsidy(nextBlockHeight, params),
PkScript: pkScript,
})
return btcutil.NewTx(tx), nil
}
示例4: TestTx
// TestTx tests the API for Tx.
func TestTx(t *testing.T) {
testTx := Block100000.Transactions[0]
tx := btcutil.NewTx(testTx)
// Ensure we get the same data back out.
if msgTx := tx.MsgTx(); !reflect.DeepEqual(msgTx, testTx) {
t.Errorf("MsgTx: mismatched MsgTx - got %v, want %v",
spew.Sdump(msgTx), spew.Sdump(testTx))
}
// Ensure transaction index set and get work properly.
wantIndex := 0
tx.SetIndex(0)
if gotIndex := tx.Index(); gotIndex != wantIndex {
t.Errorf("Index: mismatched index - got %v, want %v",
gotIndex, wantIndex)
}
// Hash for block 100,000 transaction 0.
wantShaStr := "8c14f0db3df150123e6f3dbbf30f8b955a8249b62ac1d1ff16284aefa3d06d87"
wantSha, err := wire.NewShaHashFromStr(wantShaStr)
if err != nil {
t.Errorf("NewShaHashFromStr: %v", err)
}
// Request the sha multiple times to test generation and caching.
for i := 0; i < 2; i++ {
sha := tx.Sha()
if !sha.IsEqual(wantSha) {
t.Errorf("Sha #%d mismatched sha - got %v, want %v", i,
sha, wantSha)
}
}
}
示例5: Receive
// Receive waits for the response promised by the future and returns a
// transaction given its hash.
func (r FutureGetRawTransactionResult) Receive() (*btcutil.Tx, error) {
res, err := receiveFuture(r)
if err != nil {
return nil, err
}
// Unmarshal result as a string.
var txHex string
err = json.Unmarshal(res, &txHex)
if err != nil {
return nil, err
}
// Decode the serialized transaction hex to raw bytes.
serializedTx, err := hex.DecodeString(txHex)
if err != nil {
return nil, err
}
// Deserialize the transaction and return it.
var msgTx wire.MsgTx
if err := msgTx.Deserialize(bytes.NewReader(serializedTx)); err != nil {
return nil, err
}
return btcutil.NewTx(&msgTx), nil
}
示例6: newUtxoViewpoint
// newUtxoViewpoint returns a new utxo view populated with outputs of the
// provided source transactions as if there were available at the respective
// block height specified in the heights slice. The length of the source txns
// and source tx heights must match or it will panic.
func newUtxoViewpoint(sourceTxns []*wire.MsgTx, sourceTxHeights []int32) *blockchain.UtxoViewpoint {
if len(sourceTxns) != len(sourceTxHeights) {
panic("each transaction must have its block height specified")
}
view := blockchain.NewUtxoViewpoint()
for i, tx := range sourceTxns {
view.AddTxOuts(btcutil.NewTx(tx), sourceTxHeights[i])
}
return view
}
示例7: fetchTxStoreMain
// fetchTxStoreMain fetches transaction data about the provided set of
// transactions from the point of view of the end of the main chain. It takes
// a flag which specifies whether or not fully spent transaction should be
// included in the results.
func fetchTxStoreMain(db database.Db, txSet map[wire.ShaHash]struct{}, includeSpent bool) TxStore {
// Just return an empty store now if there are no requested hashes.
txStore := make(TxStore)
if len(txSet) == 0 {
return txStore
}
// The transaction store map needs to have an entry for every requested
// transaction. By default, all the transactions are marked as missing.
// Each entry will be filled in with the appropriate data below.
txList := make([]*wire.ShaHash, 0, len(txSet))
for hash := range txSet {
hashCopy := hash
txStore[hash] = &TxData{Hash: &hashCopy, Err: database.ErrTxShaMissing}
txList = append(txList, &hashCopy)
}
// Ask the database (main chain) for the list of transactions. This
// will return the information from the point of view of the end of the
// main chain. Choose whether or not to include fully spent
// transactions depending on the passed flag.
var txReplyList []*database.TxListReply
if includeSpent {
txReplyList = db.FetchTxByShaList(txList)
} else {
txReplyList = db.FetchUnSpentTxByShaList(txList)
}
for _, txReply := range txReplyList {
// Lookup the existing results entry to modify. Skip
// this reply if there is no corresponding entry in
// the transaction store map which really should not happen, but
// be safe.
txD, ok := txStore[*txReply.Sha]
if !ok {
continue
}
// Fill in the transaction details. A copy is used here since
// there is no guarantee the returned data isn't cached and
// this code modifies the data. A bug caused by modifying the
// cached data would likely be difficult to track down and could
// cause subtle errors, so avoid the potential altogether.
txD.Err = txReply.Err
if txReply.Err == nil {
txD.Tx = btcutil.NewTx(txReply.Tx)
txD.BlockHeight = txReply.Height
txD.Spent = make([]bool, len(txReply.TxSpent))
copy(txD.Spent, txReply.TxSpent)
}
}
return txStore
}
示例8: CreateSignedTx
// CreateSignedTx creates a new signed transaction that consumes the provided
// inputs and generates the provided number of outputs by evenly splitting the
// total input amount. All outputs will be to the payment script associated
// with the harness and all inputs are assumed to do the same.
func (p *poolHarness) CreateSignedTx(inputs []spendableOutput, numOutputs uint32) (*btcutil.Tx, error) {
// Calculate the total input amount and split it amongst the requested
// number of outputs.
var totalInput btcutil.Amount
for _, input := range inputs {
totalInput += input.amount
}
amountPerOutput := int64(totalInput) / int64(numOutputs)
remainder := int64(totalInput) - amountPerOutput*int64(numOutputs)
tx := wire.NewMsgTx(wire.TxVersion)
for _, input := range inputs {
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: input.outPoint,
SignatureScript: nil,
Sequence: wire.MaxTxInSequenceNum,
})
}
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
// Sign the new transaction.
for i := range tx.TxIn {
sigScript, err := txscript.SignatureScript(tx, i, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[i].SignatureScript = sigScript
}
return btcutil.NewTx(tx), nil
}
示例9: parseChainTxNtfnParams
// parseChainTxNtfnParams parses out the transaction and optional details about
// the block it's mined in from the parameters of recvtx and redeemingtx
// notifications.
func parseChainTxNtfnParams(params []json.RawMessage) (*btcutil.Tx,
*btcjson.BlockDetails, error) {
if len(params) == 0 || len(params) > 2 {
return nil, nil, wrongNumParams(len(params))
}
// Unmarshal first parameter as a string.
var txHex string
err := json.Unmarshal(params[0], &txHex)
if err != nil {
return nil, nil, err
}
// If present, unmarshal second optional parameter as the block details
// JSON object.
var block *btcjson.BlockDetails
if len(params) > 1 {
err = json.Unmarshal(params[1], &block)
if err != nil {
return nil, nil, err
}
}
// Hex decode and deserialize the transaction.
serializedTx, err := hex.DecodeString(txHex)
if err != nil {
return nil, nil, err
}
var msgTx wire.MsgTx
err = msgTx.Deserialize(bytes.NewReader(serializedTx))
if err != nil {
return nil, nil, err
}
// TODO: Change recvtx and redeemingtx callback signatures to use
// nicer types for details about the block (block sha as a
// wire.ShaHash, block time as a time.Time, etc.).
return btcutil.NewTx(&msgTx), block, nil
}
示例10: createCoinbaseTx
// createCoinbaseTx returns a coinbase transaction paying an appropriate
// subsidy based on the passed block height to the provided address.
func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int32,
addr btcutil.Address, net *chaincfg.Params) (*btcutil.Tx, error) {
// Create the script to pay to the provided payment address.
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
tx := wire.NewMsgTx()
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
Value: blockchain.CalcBlockSubsidy(nextBlockHeight, net),
PkScript: pkScript,
})
return btcutil.NewTx(tx), nil
}
示例11: CreateCoinbaseTx
// CreateCoinbaseTx returns a coinbase transaction with the requested number of
// outputs paying an appropriate subsidy based on the passed block height to the
// address associated with the harness. It automatically uses a standard
// signature script that starts with the block height that is required by
// version 2 blocks.
func (p *poolHarness) CreateCoinbaseTx(blockHeight int32, numOutputs uint32) (*btcutil.Tx, error) {
// Create standard coinbase script.
extraNonce := int64(0)
coinbaseScript, err := txscript.NewScriptBuilder().
AddInt64(int64(blockHeight)).AddInt64(extraNonce).Script()
if err != nil {
return nil, err
}
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
totalInput := blockchain.CalcBlockSubsidy(blockHeight, p.chainParams)
amountPerOutput := totalInput / int64(numOutputs)
remainder := totalInput - amountPerOutput*int64(numOutputs)
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
return btcutil.NewTx(tx), nil
}
示例12: TestCalcSequenceLock
// TestCalcSequenceLock tests the LockTimeToSequence function, and the
// CalcSequenceLock method of a Chain instance. The tests exercise several
// combinations of inputs to the CalcSequenceLock function in order to ensure
// the returned SequenceLocks are correct for each test instance.
func TestCalcSequenceLock(t *testing.T) {
fileName := "blk_0_to_4.dat.bz2"
blocks, err := loadBlocks(fileName)
if err != nil {
t.Errorf("Error loading file: %v\n", err)
return
}
// Create a new database and chain instance to run tests against.
chain, teardownFunc, err := chainSetup("haveblock", &chaincfg.MainNetParams)
if err != nil {
t.Errorf("Failed to setup chain instance: %v", err)
return
}
defer teardownFunc()
// Since we're not dealing with the real block chain, disable
// checkpoints and set the coinbase maturity to 1.
chain.DisableCheckpoints(true)
chain.TstSetCoinbaseMaturity(1)
// Load all the blocks into our test chain.
for i := 1; i < len(blocks); i++ {
_, isOrphan, err := chain.ProcessBlock(blocks[i], blockchain.BFNone)
if err != nil {
t.Errorf("ProcessBlock fail on block %v: %v\n", i, err)
return
}
if isOrphan {
t.Errorf("ProcessBlock incorrectly returned block %v "+
"is an orphan\n", i)
return
}
}
// Create with all the utxos within the create created above.
utxoView := blockchain.NewUtxoViewpoint()
for blockHeight, block := range blocks {
for _, tx := range block.Transactions() {
utxoView.AddTxOuts(tx, int32(blockHeight))
}
}
utxoView.SetBestHash(blocks[len(blocks)-1].Hash())
// The median past time from the point of view of the second to last
// block in the chain.
medianTime := blocks[2].MsgBlock().Header.Timestamp.Unix()
// The median past time of the *next* block will be the timestamp of
// the 2nd block due to the way MTP is calculated in order to be
// compatible with Bitcoin Core.
nextMedianTime := blocks[2].MsgBlock().Header.Timestamp.Unix()
// We'll refer to this utxo within each input in the transactions
// created below. This block that includes this UTXO has a height of 4.
targetTx := blocks[4].Transactions()[0]
utxo := wire.OutPoint{
Hash: *targetTx.Hash(),
Index: 0,
}
// Add an additional transaction which will serve as our unconfirmed
// output.
var fakeScript []byte
unConfTx := &wire.MsgTx{
TxOut: []*wire.TxOut{{
PkScript: fakeScript,
Value: 5,
}},
}
unConfUtxo := wire.OutPoint{
Hash: unConfTx.TxHash(),
Index: 0,
}
// Adding a utxo with a height of 0x7fffffff indicates that the output
// is currently unmined.
utxoView.AddTxOuts(btcutil.NewTx(unConfTx), 0x7fffffff)
tests := []struct {
tx *btcutil.Tx
view *blockchain.UtxoViewpoint
want *blockchain.SequenceLock
mempool bool
}{
// A transaction of version one should disable sequence locks
// as the new sequence number semantics only apply to
// transactions version 2 or higher.
{
tx: btcutil.NewTx(&wire.MsgTx{
Version: 1,
TxIn: []*wire.TxIn{{
PreviousOutPoint: utxo,
Sequence: blockchain.LockTimeToSequence(false, 3),
}},
}),
view: utxoView,
//.........這裏部分代碼省略.........
示例13: TestInsertsCreditsDebitsRollbacks
func TestInsertsCreditsDebitsRollbacks(t *testing.T) {
t.Parallel()
// Create a double spend of the received blockchain transaction.
dupRecvTx, _ := btcutil.NewTxFromBytes(TstRecvSerializedTx)
// Switch txout amount to 1 BTC. Transaction store doesn't
// validate txs, so this is fine for testing a double spend
// removal.
TstDupRecvAmount := int64(1e8)
newDupMsgTx := dupRecvTx.MsgTx()
newDupMsgTx.TxOut[0].Value = TstDupRecvAmount
TstDoubleSpendTx := btcutil.NewTx(newDupMsgTx)
TstDoubleSpendSerializedTx := serializeTx(TstDoubleSpendTx)
// Create a "signed" (with invalid sigs) tx that spends output 0 of
// the double spend.
spendingTx := wire.NewMsgTx()
spendingTxIn := wire.NewTxIn(wire.NewOutPoint(TstDoubleSpendTx.Hash(), 0), []byte{0, 1, 2, 3, 4})
spendingTx.AddTxIn(spendingTxIn)
spendingTxOut1 := wire.NewTxOut(1e7, []byte{5, 6, 7, 8, 9})
spendingTxOut2 := wire.NewTxOut(9e7, []byte{10, 11, 12, 13, 14})
spendingTx.AddTxOut(spendingTxOut1)
spendingTx.AddTxOut(spendingTxOut2)
TstSpendingTx := btcutil.NewTx(spendingTx)
TstSpendingSerializedTx := serializeTx(TstSpendingTx)
var _ = TstSpendingTx
tests := []struct {
name string
f func(*Store) (*Store, error)
bal, unc btcutil.Amount
unspents map[wire.OutPoint]struct{}
unmined map[chainhash.Hash]struct{}
}{
{
name: "new store",
f: func(s *Store) (*Store, error) {
return s, nil
},
bal: 0,
unc: 0,
unspents: map[wire.OutPoint]struct{}{},
unmined: map[chainhash.Hash]struct{}{},
},
{
name: "txout insert",
f: func(s *Store) (*Store, error) {
rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
if err != nil {
return nil, err
}
err = s.InsertTx(rec, nil)
if err != nil {
return nil, err
}
err = s.AddCredit(rec, nil, 0, false)
return s, err
},
bal: 0,
unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
unspents: map[wire.OutPoint]struct{}{
wire.OutPoint{
Hash: *TstRecvTx.Hash(),
Index: 0,
}: {},
},
unmined: map[chainhash.Hash]struct{}{
*TstRecvTx.Hash(): {},
},
},
{
name: "insert duplicate unconfirmed",
f: func(s *Store) (*Store, error) {
rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
if err != nil {
return nil, err
}
err = s.InsertTx(rec, nil)
if err != nil {
return nil, err
}
err = s.AddCredit(rec, nil, 0, false)
return s, err
},
bal: 0,
unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
unspents: map[wire.OutPoint]struct{}{
wire.OutPoint{
Hash: *TstRecvTx.Hash(),
Index: 0,
}: {},
},
unmined: map[chainhash.Hash]struct{}{
*TstRecvTx.Hash(): {},
},
},
{
name: "confirmed txout insert",
//.........這裏部分代碼省略.........
示例14: TestCheckSerializedHeight
// TestCheckSerializedHeight tests the checkSerializedHeight function with
// various serialized heights and also does negative tests to ensure errors
// and handled properly.
func TestCheckSerializedHeight(t *testing.T) {
// Create an empty coinbase template to be used in the tests below.
coinbaseOutpoint := wire.NewOutPoint(&chainhash.Hash{}, math.MaxUint32)
coinbaseTx := wire.NewMsgTx(1)
coinbaseTx.AddTxIn(wire.NewTxIn(coinbaseOutpoint, nil))
// Expected rule errors.
missingHeightError := blockchain.RuleError{
ErrorCode: blockchain.ErrMissingCoinbaseHeight,
}
badHeightError := blockchain.RuleError{
ErrorCode: blockchain.ErrBadCoinbaseHeight,
}
tests := []struct {
sigScript []byte // Serialized data
wantHeight int32 // Expected height
err error // Expected error type
}{
// No serialized height length.
{[]byte{}, 0, missingHeightError},
// Serialized height length with no height bytes.
{[]byte{0x02}, 0, missingHeightError},
// Serialized height length with too few height bytes.
{[]byte{0x02, 0x4a}, 0, missingHeightError},
// Serialized height that needs 2 bytes to encode.
{[]byte{0x02, 0x4a, 0x52}, 21066, nil},
// Serialized height that needs 2 bytes to encode, but backwards
// endianness.
{[]byte{0x02, 0x4a, 0x52}, 19026, badHeightError},
// Serialized height that needs 3 bytes to encode.
{[]byte{0x03, 0x40, 0x0d, 0x03}, 200000, nil},
// Serialized height that needs 3 bytes to encode, but backwards
// endianness.
{[]byte{0x03, 0x40, 0x0d, 0x03}, 1074594560, badHeightError},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
msgTx := coinbaseTx.Copy()
msgTx.TxIn[0].SignatureScript = test.sigScript
tx := btcutil.NewTx(msgTx)
err := blockchain.TstCheckSerializedHeight(tx, test.wantHeight)
if reflect.TypeOf(err) != reflect.TypeOf(test.err) {
t.Errorf("checkSerializedHeight #%d wrong error type "+
"got: %v <%T>, want: %T", i, err, err, test.err)
continue
}
if rerr, ok := err.(blockchain.RuleError); ok {
trerr := test.err.(blockchain.RuleError)
if rerr.ErrorCode != trerr.ErrorCode {
t.Errorf("checkSerializedHeight #%d wrong "+
"error code got: %v, want: %v", i,
rerr.ErrorCode, trerr.ErrorCode)
continue
}
}
}
}
示例15: loadTxStore
// loadTxStore returns a transaction store loaded from a file.
func loadTxStore(filename string) (blockchain.TxStore, error) {
// The txstore file format is:
// <num tx data entries> <tx length> <serialized tx> <blk height>
// <num spent bits> <spent bits>
//
// All num and length fields are little-endian uint32s. The spent bits
// field is padded to a byte boundary.
filename = filepath.Join("testdata/", filename)
fi, err := os.Open(filename)
if err != nil {
return nil, err
}
// Choose read based on whether the file is compressed or not.
var r io.Reader
if strings.HasSuffix(filename, ".bz2") {
r = bzip2.NewReader(fi)
} else {
r = fi
}
defer fi.Close()
// Num of transaction store objects.
var numItems uint32
if err := binary.Read(r, binary.LittleEndian, &numItems); err != nil {
return nil, err
}
txStore := make(blockchain.TxStore)
var uintBuf uint32
for height := uint32(0); height < numItems; height++ {
txD := blockchain.TxData{}
// Serialized transaction length.
err = binary.Read(r, binary.LittleEndian, &uintBuf)
if err != nil {
return nil, err
}
serializedTxLen := uintBuf
if serializedTxLen > wire.MaxBlockPayload {
return nil, fmt.Errorf("Read serialized transaction "+
"length of %d is larger max allowed %d",
serializedTxLen, wire.MaxBlockPayload)
}
// Transaction.
var msgTx wire.MsgTx
err = msgTx.Deserialize(r)
if err != nil {
return nil, err
}
txD.Tx = btcutil.NewTx(&msgTx)
// Transaction hash.
txHash, err := msgTx.TxSha()
if err != nil {
return nil, err
}
txD.Hash = &txHash
// Block height the transaction came from.
err = binary.Read(r, binary.LittleEndian, &uintBuf)
if err != nil {
return nil, err
}
txD.BlockHeight = int64(uintBuf)
// Num spent bits.
err = binary.Read(r, binary.LittleEndian, &uintBuf)
if err != nil {
return nil, err
}
numSpentBits := uintBuf
numSpentBytes := numSpentBits / 8
if numSpentBits%8 != 0 {
numSpentBytes++
}
// Packed spent bytes.
spentBytes := make([]byte, numSpentBytes)
_, err = io.ReadFull(r, spentBytes)
if err != nil {
return nil, err
}
// Populate spent data based on spent bits.
txD.Spent = make([]bool, numSpentBits)
for byteNum, spentByte := range spentBytes {
for bit := 0; bit < 8; bit++ {
if uint32((byteNum*8)+bit) < numSpentBits {
if spentByte&(1<<uint(bit)) != 0 {
txD.Spent[(byteNum*8)+bit] = true
}
}
}
}
txStore[*txD.Hash] = &txD
//.........這裏部分代碼省略.........