本文整理匯總了Golang中github.com/btcsuite/btcd/wire.NewTxIn函數的典型用法代碼示例。如果您正苦於以下問題:Golang NewTxIn函數的具體用法?Golang NewTxIn怎麽用?Golang NewTxIn使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了NewTxIn函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: newLightningChannel
// newLightningChannel...
func newLightningChannel(wallet *LightningWallet, events chainntnfs.ChainNotifier,
chanDB *channeldb.DB, state *channeldb.OpenChannel) (*LightningChannel, error) {
lc := &LightningChannel{
lnwallet: wallet,
channelEvents: events,
channelState: state,
channelDB: chanDB,
updateTotem: make(chan struct{}, 1),
pendingPayments: make(map[PaymentHash]*PaymentDescriptor),
unfufilledPayments: make(map[PaymentHash]*PaymentRequest),
}
// TODO(roasbeef): do a NotifySpent for the funding input, and
// NotifyReceived for all commitment outputs.
// Populate the totem.
lc.updateTotem <- struct{}{}
fundingTxId := state.FundingTx.TxSha()
fundingPkScript, err := scriptHashPkScript(state.FundingRedeemScript)
if err != nil {
return nil, err
}
_, multiSigIndex := findScriptOutputIndex(state.FundingTx, fundingPkScript)
lc.fundingTxIn = wire.NewTxIn(wire.NewOutPoint(&fundingTxId, multiSigIndex), nil)
lc.fundingP2SH = fundingPkScript
return lc, nil
}
示例2: createSpendingTx
// createSpendTx generates a basic spending transaction given the passed
// signature and public key scripts.
func createSpendingTx(sigScript, pkScript []byte) *wire.MsgTx {
coinbaseTx := wire.NewMsgTx(wire.TxVersion)
outPoint := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0))
txIn := wire.NewTxIn(outPoint, []byte{OP_0, OP_0})
txOut := wire.NewTxOut(0, pkScript)
coinbaseTx.AddTxIn(txIn)
coinbaseTx.AddTxOut(txOut)
spendingTx := wire.NewMsgTx(wire.TxVersion)
coinbaseTxHash := coinbaseTx.TxHash()
outPoint = wire.NewOutPoint(&coinbaseTxHash, 0)
txIn = wire.NewTxIn(outPoint, sigScript)
txOut = wire.NewTxOut(0, nil)
spendingTx.AddTxIn(txIn)
spendingTx.AddTxOut(txOut)
return spendingTx
}
示例3: createSpendingTx
// createSpendTx generates a basic spending transaction given the passed
// signature and public key scripts.
func createSpendingTx(sigScript, pkScript []byte) *wire.MsgTx {
coinbaseTx := wire.NewMsgTx()
outPoint := wire.NewOutPoint(&wire.ShaHash{}, ^uint32(0))
txIn := wire.NewTxIn(outPoint, []byte{OP_0, OP_0})
txOut := wire.NewTxOut(0, pkScript)
coinbaseTx.AddTxIn(txIn)
coinbaseTx.AddTxOut(txOut)
spendingTx := wire.NewMsgTx()
coinbaseTxSha := coinbaseTx.TxSha()
outPoint = wire.NewOutPoint(&coinbaseTxSha, 0)
txIn = wire.NewTxIn(outPoint, sigScript)
txOut = wire.NewTxOut(0, nil)
spendingTx.AddTxIn(txIn)
spendingTx.AddTxOut(txOut)
return spendingTx
}
示例4: toMsgTx
// toMsgTx generates a btcwire.MsgTx with this tx's inputs and outputs.
func (tx *withdrawalTx) toMsgTx() *wire.MsgTx {
msgtx := wire.NewMsgTx(wire.TxVersion)
for _, o := range tx.outputs {
msgtx.AddTxOut(wire.NewTxOut(int64(o.amount), o.pkScript()))
}
if tx.hasChange() {
msgtx.AddTxOut(tx.changeOutput)
}
for _, i := range tx.inputs {
msgtx.AddTxIn(wire.NewTxIn(&i.OutPoint, []byte{}))
}
return msgtx
}
示例5: makeInputSource
func makeInputSource(unspents []*wire.TxOut) InputSource {
// Return outputs in order.
currentTotal := btcutil.Amount(0)
currentInputs := make([]*wire.TxIn, 0, len(unspents))
f := func(target btcutil.Amount) (btcutil.Amount, []*wire.TxIn, [][]byte, error) {
for currentTotal < target && len(unspents) != 0 {
u := unspents[0]
unspents = unspents[1:]
nextInput := wire.NewTxIn(&wire.OutPoint{}, nil)
currentTotal += btcutil.Amount(u.Value)
currentInputs = append(currentInputs, nextInput)
}
return currentTotal, currentInputs, make([][]byte, len(currentInputs)), nil
}
return InputSource(f)
}
示例6: makeInputSource
// makeInputSource creates an InputSource that creates inputs for every unspent
// output with non-zero output values. The target amount is ignored since every
// output is consumed. The InputSource does not return any previous output
// scripts as they are not needed for creating the unsinged transaction and are
// looked up again by the wallet during the call to signrawtransaction.
func makeInputSource(outputs []btcjson.ListUnspentResult) txauthor.InputSource {
var (
totalInputValue btcutil.Amount
inputs = make([]*wire.TxIn, 0, len(outputs))
sourceErr error
)
for _, output := range outputs {
outputAmount, err := btcutil.NewAmount(output.Amount)
if err != nil {
sourceErr = fmt.Errorf(
"invalid amount `%v` in listunspent result",
output.Amount)
break
}
if outputAmount == 0 {
continue
}
if !saneOutputValue(outputAmount) {
sourceErr = fmt.Errorf(
"impossible output amount `%v` in listunspent result",
outputAmount)
break
}
totalInputValue += outputAmount
previousOutPoint, err := parseOutPoint(&output)
if err != nil {
sourceErr = fmt.Errorf(
"invalid data in listunspent result: %v",
err)
break
}
inputs = append(inputs, wire.NewTxIn(&previousOutPoint, nil))
}
if sourceErr == nil && totalInputValue == 0 {
sourceErr = noInputValue{}
}
return func(btcutil.Amount) (btcutil.Amount, []*wire.TxIn, [][]byte, error) {
return totalInputValue, inputs, nil, sourceErr
}
}
示例7: newBobNode
// newBobNode generates a test "ln node" to interact with Alice (us). For the
// funding transaction, bob has a single output totaling 7BTC. For our basic
// test, he'll fund the channel with 5BTC, leaving 2BTC to the change output.
// TODO(roasbeef): proper handling of change etc.
func newBobNode() (*bobNode, error) {
// First, parse Bob's priv key in order to obtain a key he'll use for the
// multi-sig funding transaction.
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
// Next, generate an output redeemable by bob.
bobAddr, err := btcutil.NewAddressPubKey(privKey.PubKey().SerializeCompressed(),
ActiveNetParams)
if err != nil {
return nil, err
}
bobAddrScript, err := txscript.PayToAddrScript(bobAddr.AddressPubKeyHash())
if err != nil {
return nil, err
}
prevOut := wire.NewOutPoint(&wire.ShaHash{}, ^uint32(0))
// TODO(roasbeef): When the chain rpc is hooked in, assert bob's output
// actually exists and it unspent in the chain.
bobTxIn := wire.NewTxIn(prevOut, nil)
// Using bobs priv key above, create a change address he can spend.
bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript)
// Bob's initial revocation hash is just his private key with the first
// byte changed...
var revocation [20]byte
copy(revocation[:], bobsPrivKey)
revocation[0] = 0xff
// His ID is just as creative...
var id [wire.HashSize]byte
id[0] = 0xff
return &bobNode{
id: id,
privKey: privKey,
channelKey: pubKey,
deliveryAddress: bobAddr,
revocation: revocation,
delay: 5,
availableOutputs: []*wire.TxIn{bobTxIn},
changeOutputs: []*wire.TxOut{bobChangeOutput},
}, nil
}
示例8: TestCheckSerializedHeight
// TestCheckSerializedHeight tests the checkSerializedHeight function with
// various serialized heights and also does negative tests to ensure errors
// and handled properly.
func TestCheckSerializedHeight(t *testing.T) {
// Create an empty coinbase template to be used in the tests below.
coinbaseOutpoint := wire.NewOutPoint(&chainhash.Hash{}, math.MaxUint32)
coinbaseTx := wire.NewMsgTx(1)
coinbaseTx.AddTxIn(wire.NewTxIn(coinbaseOutpoint, nil))
// Expected rule errors.
missingHeightError := blockchain.RuleError{
ErrorCode: blockchain.ErrMissingCoinbaseHeight,
}
badHeightError := blockchain.RuleError{
ErrorCode: blockchain.ErrBadCoinbaseHeight,
}
tests := []struct {
sigScript []byte // Serialized data
wantHeight int32 // Expected height
err error // Expected error type
}{
// No serialized height length.
{[]byte{}, 0, missingHeightError},
// Serialized height length with no height bytes.
{[]byte{0x02}, 0, missingHeightError},
// Serialized height length with too few height bytes.
{[]byte{0x02, 0x4a}, 0, missingHeightError},
// Serialized height that needs 2 bytes to encode.
{[]byte{0x02, 0x4a, 0x52}, 21066, nil},
// Serialized height that needs 2 bytes to encode, but backwards
// endianness.
{[]byte{0x02, 0x4a, 0x52}, 19026, badHeightError},
// Serialized height that needs 3 bytes to encode.
{[]byte{0x03, 0x40, 0x0d, 0x03}, 200000, nil},
// Serialized height that needs 3 bytes to encode, but backwards
// endianness.
{[]byte{0x03, 0x40, 0x0d, 0x03}, 1074594560, badHeightError},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
msgTx := coinbaseTx.Copy()
msgTx.TxIn[0].SignatureScript = test.sigScript
tx := btcutil.NewTx(msgTx)
err := blockchain.TstCheckSerializedHeight(tx, test.wantHeight)
if reflect.TypeOf(err) != reflect.TypeOf(test.err) {
t.Errorf("checkSerializedHeight #%d wrong error type "+
"got: %v <%T>, want: %T", i, err, err, test.err)
continue
}
if rerr, ok := err.(blockchain.RuleError); ok {
trerr := test.err.(blockchain.RuleError)
if rerr.ErrorCode != trerr.ErrorCode {
t.Errorf("checkSerializedHeight #%d wrong "+
"error code got: %v, want: %v", i,
rerr.ErrorCode, trerr.ErrorCode)
continue
}
}
}
}
示例9: TestInsertsCreditsDebitsRollbacks
func TestInsertsCreditsDebitsRollbacks(t *testing.T) {
t.Parallel()
// Create a double spend of the received blockchain transaction.
dupRecvTx, _ := btcutil.NewTxFromBytes(TstRecvSerializedTx)
// Switch txout amount to 1 BTC. Transaction store doesn't
// validate txs, so this is fine for testing a double spend
// removal.
TstDupRecvAmount := int64(1e8)
newDupMsgTx := dupRecvTx.MsgTx()
newDupMsgTx.TxOut[0].Value = TstDupRecvAmount
TstDoubleSpendTx := btcutil.NewTx(newDupMsgTx)
TstDoubleSpendSerializedTx := serializeTx(TstDoubleSpendTx)
// Create a "signed" (with invalid sigs) tx that spends output 0 of
// the double spend.
spendingTx := wire.NewMsgTx()
spendingTxIn := wire.NewTxIn(wire.NewOutPoint(TstDoubleSpendTx.Hash(), 0), []byte{0, 1, 2, 3, 4})
spendingTx.AddTxIn(spendingTxIn)
spendingTxOut1 := wire.NewTxOut(1e7, []byte{5, 6, 7, 8, 9})
spendingTxOut2 := wire.NewTxOut(9e7, []byte{10, 11, 12, 13, 14})
spendingTx.AddTxOut(spendingTxOut1)
spendingTx.AddTxOut(spendingTxOut2)
TstSpendingTx := btcutil.NewTx(spendingTx)
TstSpendingSerializedTx := serializeTx(TstSpendingTx)
var _ = TstSpendingTx
tests := []struct {
name string
f func(*Store) (*Store, error)
bal, unc btcutil.Amount
unspents map[wire.OutPoint]struct{}
unmined map[chainhash.Hash]struct{}
}{
{
name: "new store",
f: func(s *Store) (*Store, error) {
return s, nil
},
bal: 0,
unc: 0,
unspents: map[wire.OutPoint]struct{}{},
unmined: map[chainhash.Hash]struct{}{},
},
{
name: "txout insert",
f: func(s *Store) (*Store, error) {
rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
if err != nil {
return nil, err
}
err = s.InsertTx(rec, nil)
if err != nil {
return nil, err
}
err = s.AddCredit(rec, nil, 0, false)
return s, err
},
bal: 0,
unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
unspents: map[wire.OutPoint]struct{}{
wire.OutPoint{
Hash: *TstRecvTx.Hash(),
Index: 0,
}: {},
},
unmined: map[chainhash.Hash]struct{}{
*TstRecvTx.Hash(): {},
},
},
{
name: "insert duplicate unconfirmed",
f: func(s *Store) (*Store, error) {
rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
if err != nil {
return nil, err
}
err = s.InsertTx(rec, nil)
if err != nil {
return nil, err
}
err = s.AddCredit(rec, nil, 0, false)
return s, err
},
bal: 0,
unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
unspents: map[wire.OutPoint]struct{}{
wire.OutPoint{
Hash: *TstRecvTx.Hash(),
Index: 0,
}: {},
},
unmined: map[chainhash.Hash]struct{}{
*TstRecvTx.Hash(): {},
},
},
{
name: "confirmed txout insert",
//.........這裏部分代碼省略.........
示例10: createTxIn
// createTxIn pulls the outpoint out of the funding TxOut and uses it as a reference
// for the txin that will be placed in a new transaction.
func createTxIn(outpoint *wire.OutPoint) *wire.TxIn {
// The second arg is the txin's signature script, which we are leaving empty
// until the entire transaction is ready.
txin := wire.NewTxIn(outpoint, []byte{})
return txin
}
示例11: InsertBlock
// InsertBlock inserts raw block and transaction data from a block into the
// database. The first block inserted into the database will be treated as the
// genesis block. Every subsequent block insert requires the referenced parent
// block to already exist.
func (db *LevelDb) InsertBlock(block *btcutil.Block) (height int64, rerr error) {
db.dbLock.Lock()
defer db.dbLock.Unlock()
defer func() {
if rerr == nil {
rerr = db.processBatches()
} else {
db.lBatch().Reset()
}
}()
blocksha := block.Sha()
mblock := block.MsgBlock()
rawMsg, err := block.Bytes()
if err != nil {
log.Warnf("Failed to obtain raw block sha %v", blocksha)
return 0, err
}
txloc, err := block.TxLoc()
if err != nil {
log.Warnf("Failed to obtain raw block sha %v", blocksha)
return 0, err
}
// Insert block into database
newheight, err := db.insertBlockData(blocksha, &mblock.Header.PrevBlock,
rawMsg)
if err != nil {
log.Warnf("Failed to insert block %v %v %v", blocksha,
&mblock.Header.PrevBlock, err)
return 0, err
}
// At least two blocks in the long past were generated by faulty
// miners, the sha of the transaction exists in a previous block,
// detect this condition and 'accept' the block.
for txidx, tx := range mblock.Transactions {
txsha, err := block.TxSha(txidx)
if err != nil {
log.Warnf("failed to compute tx name block %v idx %v err %v", blocksha, txidx, err)
return 0, err
}
spentbuflen := (len(tx.TxOut) + 7) / 8
spentbuf := make([]byte, spentbuflen, spentbuflen)
if len(tx.TxOut)%8 != 0 {
for i := uint(len(tx.TxOut) % 8); i < 8; i++ {
spentbuf[spentbuflen-1] |= (byte(1) << i)
}
}
err = db.insertTx(txsha, newheight, txloc[txidx].TxStart, txloc[txidx].TxLen, spentbuf)
if err != nil {
log.Warnf("block %v idx %v failed to insert tx %v %v err %v", blocksha, newheight, &txsha, txidx, err)
return 0, err
}
// Some old blocks contain duplicate transactions
// Attempt to cleanly bypass this problem by marking the
// first as fully spent.
// http://blockexplorer.com/b/91812 dup in 91842
// http://blockexplorer.com/b/91722 dup in 91880
if newheight == 91812 {
dupsha, err := wire.NewShaHashFromStr("d5d27987d2a3dfc724e359870c6644b40e497bdc0589a033220fe15429d88599")
if err != nil {
panic("invalid sha string in source")
}
if txsha.IsEqual(dupsha) {
// marking TxOut[0] as spent
po := wire.NewOutPoint(dupsha, 0)
txI := wire.NewTxIn(po, []byte("garbage"))
var spendtx wire.MsgTx
spendtx.AddTxIn(txI)
err = db.doSpend(&spendtx)
if err != nil {
log.Warnf("block %v idx %v failed to spend tx %v %v err %v", blocksha, newheight, &txsha, txidx, err)
}
}
}
if newheight == 91722 {
dupsha, err := wire.NewShaHashFromStr("e3bf3d07d4b0375638d5f1db5255fe07ba2c4cb067cd81b84ee974b6585fb468")
if err != nil {
panic("invalid sha string in source")
}
if txsha.IsEqual(dupsha) {
// marking TxOut[0] as spent
po := wire.NewOutPoint(dupsha, 0)
txI := wire.NewTxIn(po, []byte("garbage"))
var spendtx wire.MsgTx
spendtx.AddTxIn(txI)
err = db.doSpend(&spendtx)
if err != nil {
log.Warnf("block %v idx %v failed to spend tx %v %v err %v", blocksha, newheight, &txsha, txidx, err)
}
}
//.........這裏部分代碼省略.........
示例12: readElement
//.........這裏部分代碼省略.........
// Read the slice length
l := io.LimitReader(r, int64(blobLength))
*e, err = ioutil.ReadAll(l)
if err != nil {
return err
}
if len(*e) != int(blobLength) {
return fmt.Errorf("EOF: Slice length mismatch.")
}
return nil
case *PkScript:
// Get the script length first
var scriptLength uint8
err = readElement(r, &scriptLength)
if err != nil {
return err
}
if scriptLength > 25 {
return fmt.Errorf("PkScript too long!")
}
// Read the script length
l := io.LimitReader(r, int64(scriptLength))
*e, err = ioutil.ReadAll(l)
if err != nil {
return err
}
if len(*e) != int(scriptLength) {
return fmt.Errorf("EOF: Signature length mismatch.")
}
return nil
case *string:
// Get the string length first
var strlen uint16
err = readElement(r, &strlen)
if err != nil {
return err
}
// Read the string for the length
l := io.LimitReader(r, int64(strlen))
b, err := ioutil.ReadAll(l)
if len(b) != int(strlen) {
return fmt.Errorf("EOF: String length mismatch.")
}
*e = string(b)
if err != nil {
return err
}
return nil
case *[]*wire.TxIn:
// Read the size (1-byte number of txins)
var numScripts uint8
err = readElement(r, &numScripts)
if err != nil {
return err
}
if numScripts > 127 {
return fmt.Errorf("Too many txins")
}
// Append the actual TxIns
var txins []*wire.TxIn
for i := uint8(0); i < numScripts; i++ {
outpoint := new(wire.OutPoint)
txin := wire.NewTxIn(outpoint, nil)
err = readElement(r, &txin)
if err != nil {
return err
}
txins = append(txins, txin)
}
*e = *&txins
return nil
case **wire.TxIn:
// Hash
var h [32]byte
_, err = io.ReadFull(r, h[:])
if err != nil {
return err
}
hash, err := wire.NewShaHash(h[:])
if err != nil {
return err
}
(*e).PreviousOutPoint.Hash = *hash
// Index
var idxBytes [4]byte
_, err = io.ReadFull(r, idxBytes[:])
if err != nil {
return err
}
(*e).PreviousOutPoint.Index = binary.BigEndian.Uint32(idxBytes[:])
return nil
default:
return fmt.Errorf("Unknown type in readElement: %T", e)
}
return nil
}
示例13: newBobNode
// newBobNode generates a test "ln node" to interact with Alice (us). For the
// funding transaction, bob has a single output totaling 7BTC. For our basic
// test, he'll fund the channel with 5BTC, leaving 2BTC to the change output.
// TODO(roasbeef): proper handling of change etc.
func newBobNode(miner *rpctest.Harness) (*bobNode, error) {
// First, parse Bob's priv key in order to obtain a key he'll use for the
// multi-sig funding transaction.
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
// Next, generate an output redeemable by bob.
bobAddrPk, err := btcutil.NewAddressPubKey(privKey.PubKey().SerializeCompressed(),
miner.ActiveNet)
if err != nil {
return nil, err
}
bobAddr := bobAddrPk.AddressPubKeyHash()
bobAddrScript, err := txscript.PayToAddrScript(bobAddr)
if err != nil {
return nil, err
}
// Give bobNode one 7 BTC output for use in creating channels.
outputMap := map[string]btcutil.Amount{
bobAddr.String(): btcutil.Amount(7e8),
}
mainTxid, err := miner.CoinbaseSpend(outputMap)
if err != nil {
return nil, err
}
// Mine a block in order to include the above output in a block. During
// the reservation workflow, we currently test to ensure that the funding
// output we're given actually exists.
if _, err := miner.Node.Generate(1); err != nil {
return nil, err
}
// Grab the transaction in order to locate the output index to Bob.
tx, err := miner.Node.GetRawTransaction(mainTxid)
if err != nil {
return nil, err
}
found, index := findScriptOutputIndex(tx.MsgTx(), bobAddrScript)
if !found {
return nil, fmt.Errorf("output to bob never created")
}
prevOut := wire.NewOutPoint(mainTxid, index)
// TODO(roasbeef): When the chain rpc is hooked in, assert bob's output
// actually exists and it unspent in the chain.
bobTxIn := wire.NewTxIn(prevOut, nil)
// Using bobs priv key above, create a change output he can spend.
bobChangeOutput := wire.NewTxOut(2*1e8, bobAddrScript)
// Bob's initial revocation hash is just his private key with the first
// byte changed...
var revocation [20]byte
copy(revocation[:], bobsPrivKey)
revocation[0] = 0xff
// His ID is just as creative...
var id [wire.HashSize]byte
id[0] = 0xff
return &bobNode{
id: id,
privKey: privKey,
channelKey: pubKey,
deliveryAddress: bobAddr,
revocation: revocation,
delay: 5,
availableOutputs: []*wire.TxIn{bobTxIn},
changeOutputs: []*wire.TxOut{bobChangeOutput},
}, nil
}
示例14:
// Privkey: 5b18f5049efd9d3aff1fb9a06506c0b809fb71562b6ecd02f6c5b3ab298f3b0f
// PKhash: miky84cHvLuk6jcT6GsSbgHR8d7eZCu9Qc
changePkScript, _ = hex.DecodeString("76a914238ee44bb5c8c1314dd03974a17ec6c406fdcb8388ac")
// echo -n | openssl sha256
// This stuff gets reversed!!!
shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
shaHash1, _ = wire.NewShaHash(shaHash1Bytes)
outpoint1 = wire.NewOutPoint(shaHash1, 0)
// echo | openssl sha256
// This stuff gets reversed!!!
shaHash2Bytes, _ = hex.DecodeString("01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b")
shaHash2, _ = wire.NewShaHash(shaHash2Bytes)
outpoint2 = wire.NewOutPoint(shaHash2, 1)
// create inputs from outpoint1 and outpoint2
inputs = []*wire.TxIn{wire.NewTxIn(outpoint1, nil), wire.NewTxIn(outpoint2, nil)}
// Commitment Signature
tx = wire.NewMsgTx()
emptybytes = new([]byte)
sigStr, _ = txscript.RawTxInSignature(tx, 0, *emptybytes, txscript.SigHashAll, privKey)
commitSig, _ = btcec.ParseSignature(sigStr, btcec.S256())
// Funding TX Sig 1
sig1privKeyBytes, _ = hex.DecodeString("927f5827d75dd2addeb532c0fa5ac9277565f981dd6d0d037b422be5f60bdbef")
sig1privKey, _ = btcec.PrivKeyFromBytes(btcec.S256(), sig1privKeyBytes)
sigStr1, _ = txscript.RawTxInSignature(tx, 0, *emptybytes, txscript.SigHashAll, sig1privKey)
commitSig1, _ = btcec.ParseSignature(sigStr1, btcec.S256())
// Funding TX Sig 2
sig2privKeyBytes, _ = hex.DecodeString("8a4ad188f6f4000495b765cfb6ffa591133a73019c45428ddd28f53bab551847")
sig2privKey, _ = btcec.PrivKeyFromBytes(btcec.S256(), sig2privKeyBytes)
示例15: fundTx
// fundTx attempts to fund a transaction sending amt bitcoin. The coins are
// selected such that the final amount spent pays enough fees as dictated by
// the passed fee rate. The passed fee rate should be expressed in
// satoshis-per-byte.
//
// NOTE: The memWallet's mutex must be held when this function is called.
func (m *memWallet) fundTx(tx *wire.MsgTx, amt btcutil.Amount, feeRate btcutil.Amount) error {
const (
// spendSize is the largest number of bytes of a sigScript
// which spends a p2pkh output: OP_DATA_73 <sig> OP_DATA_33 <pubkey>
spendSize = 1 + 73 + 1 + 33
)
var (
amtSelected btcutil.Amount
txSize int
)
for outPoint, utxo := range m.utxos {
// Skip any outputs that are still currently immature or are
// currently locked.
if !utxo.isMature(m.currentHeight) || utxo.isLocked {
continue
}
amtSelected += utxo.value
// Add the selected output to the transaction, updating the
// current tx size while accounting for the size of the future
// sigScript.
tx.AddTxIn(wire.NewTxIn(&outPoint, nil))
txSize = tx.SerializeSize() + spendSize*len(tx.TxIn)
// Calculate the fee required for the txn at this point
// observing the specified fee rate. If we don't have enough
// coins from he current amount selected to pay the fee, then
// continue to grab more coins.
reqFee := btcutil.Amount(txSize * int(feeRate))
if amtSelected-reqFee < amt {
continue
}
// If we have any change left over, then add an additional
// output to the transaction reserved for change.
changeVal := amtSelected - amt - reqFee
if changeVal > 0 {
addr, err := m.newAddress()
if err != nil {
return err
}
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
changeOutput := &wire.TxOut{
Value: int64(changeVal),
PkScript: pkScript,
}
tx.AddTxOut(changeOutput)
}
return nil
}
// If we've reached this point, then coin selection failed due to an
// insufficient amount of coins.
return fmt.Errorf("not enough funds for coin selection")
}