本文整理匯總了Golang中container/heap.Pop函數的典型用法代碼示例。如果您正苦於以下問題:Golang Pop函數的具體用法?Golang Pop怎麽用?Golang Pop使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Pop函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: TestPush
func TestPush(t *testing.T) {
h := &uint64Heap{}
heap.Init(h)
e := elem{val: 5}
heap.Push(h, e)
e.val = 3
heap.Push(h, e)
e.val = 4
heap.Push(h, e)
require.Equal(t, h.Len(), 3)
require.EqualValues(t, (*h)[0].val, 3)
e.val = 10
(*h)[0] = e
heap.Fix(h, 0)
require.EqualValues(t, (*h)[0].val, 4)
e.val = 11
(*h)[0] = e
heap.Fix(h, 0)
require.EqualValues(t, (*h)[0].val, 5)
e = heap.Pop(h).(elem)
require.EqualValues(t, e.val, 5)
e = heap.Pop(h).(elem)
require.EqualValues(t, e.val, 10)
e = heap.Pop(h).(elem)
require.EqualValues(t, e.val, 11)
require.Equal(t, h.Len(), 0)
}
示例2: main
func main() {
in, _ := os.Open("10954.in")
defer in.Close()
out, _ := os.Create("10954.out")
defer out.Close()
var n, num int
for {
if fmt.Fscanf(in, "%d", &n); n == 0 {
break
}
pq := make(priorityQueue, n)
for i := range pq {
fmt.Fscanf(in, "%d", &num)
pq[i] = &item{num}
}
heap.Init(&pq)
total := 0
for pq.Len() > 1 {
n1 := heap.Pop(&pq).(*item)
n2 := heap.Pop(&pq).(*item)
total += n1.value + n2.value
heap.Push(&pq, &item{n1.value + n2.value})
}
fmt.Fprintln(out, total)
}
}
示例3: TestQueue
func TestQueue(t *testing.T) {
q := NewImageCache()
heap.Push(q, NewCacheItem("item1", nil))
time.Sleep(time.Duration(1) * time.Millisecond)
heap.Push(q, NewCacheItem("item2", nil))
time.Sleep(time.Duration(1) * time.Millisecond)
heap.Push(q, NewCacheItem("item3", nil))
time.Sleep(time.Duration(1) * time.Millisecond)
heap.Push(q, NewCacheItem("item4", nil))
time.Sleep(time.Duration(1) * time.Millisecond)
t.Log(q.GetPaths())
q.Update("item1")
t.Log(q.GetPaths())
t.Log(q.Top().path)
heap.Pop(q)
t.Log(q.GetPaths())
t.Log(q.Top().path)
heap.Pop(q)
t.Log(q.GetPaths())
t.Log(q.Top().path)
heap.Pop(q)
t.Log(q.GetPaths())
}
示例4: Harvest
// Retorna a arvore
func Harvest(freqMap map[string]int) *tree.Node {
// Primeiro a gente cria a nossa priorityqueue a partir do dicionario de frequencias
hh := huffmanHeap.New(freqMap)
for {
// Caso a heap contenha um unico elemento retornamos ela
if hh.Len() == 1 {
return heap.Pop(&hh).(*huffmanHeap.Item).Node
}
// Caso contrario pegamos os dois elementos do topo
r, ok1 := heap.Pop(&hh).(*huffmanHeap.Item)
l, ok2 := heap.Pop(&hh).(*huffmanHeap.Item)
if !ok1 || !ok2 {
panic(errors.New("Element was not of type huffmanHeap.Item"))
}
//E criamos uma "arvore" intermediaria com eles
newItem := &huffmanHeap.Item{
Node: tree.New("", r.Node, l.Node),
Frequency: r.Frequency + l.Frequency,
}
// Adicionando em seguida ao
heap.Push(&hh, newItem)
}
}
示例5: makeTreeFromNodeSlice
// makeTreeFromNodeSlice makes a tree from a slice of huffNodes, with the
// lowest-count nodes going farthest from the root. Returns a non-nil error
// on failure, nil error otherwise. Returns the created tree. If nodes is empty,
// returns an error.
func makeTreeFromNodeSlice(nodes []*huffNode) (t *huffNode, err error) {
if len(nodes) == 0 {
return nil, errors.New("Too few elements!")
}
// We're going to put the nodes in a heap, with low-ness determined
// by the nodes' counts.
nh := &nodeHeap{}
heap.Init(nh)
for _, node := range nodes {
heap.Push(nh, node)
}
// Now, we're going to do the following:
//
// Until there's only one node in the heap:
// Remove the lowest-count two nodes
// Make a new node with those two as children, whose count is the
// sum of its childrens' counts
// Add that new node to the heap
//
// This will create an optimally-balanced tree, based on byte counts. For
// more information, see http://en.wikipedia.org/wiki/Huffman_coding.
for nh.Len() > 1 {
nodeOne := heap.Pop(nh).(*huffNode)
nodeTwo := heap.Pop(nh).(*huffNode)
newNode := &huffNode{char: 1,
count: nodeOne.count + nodeTwo.count,
left: nodeOne,
right: nodeTwo}
heap.Push(nh, newNode)
}
// Great, now there's only one node and it's the root of the tree!
return heap.Pop(nh).(*huffNode), nil
}
示例6: nearestNeighbours
// This helper function finds the k nearest neighbours of target in items. It's
// slower than the VPTree, but its correctness is easy to verify, so we can
// test the VPTree against it.
func nearestNeighbours(target uint64, items []Item, k int) (coords []Item, distances []float64) {
pq := &priorityQueue{}
// Push all items onto a heap
for _, v := range items {
d := hamming(v.Sig, target)
heap.Push(pq, &heapItem{v, d})
}
// Pop all but the k smallest items
for pq.Len() > k {
heap.Pop(pq)
}
// Extract the k smallest items and distances
for pq.Len() > 0 {
hi := heap.Pop(pq)
coords = append(coords, hi.(*heapItem).Item)
distances = append(distances, hi.(*heapItem).Dist)
}
// Reverse coords and distances, because we popped them from the heap
// in large-to-small order
for i, j := 0, len(coords)-1; i < j; i, j = i+1, j-1 {
coords[i], coords[j] = coords[j], coords[i]
distances[i], distances[j] = distances[j], distances[i]
}
return
}
示例7: TestEvictOldest
func (s *S) TestEvictOldest(c *C) {
q := make(utility.PriorityQueue, 0, 10)
heap.Init(&q)
var e EvictionPolicy = EvictOldest(5)
for i := 0; i < 10; i++ {
var item utility.Item = utility.Item{
Value: float64(i),
Priority: int64(i),
}
heap.Push(&q, &item)
}
c.Check(q, HasLen, 10)
e(&q)
c.Check(q, HasLen, 5)
c.Check(heap.Pop(&q), utility.ValueEquals, 4.0)
c.Check(heap.Pop(&q), utility.ValueEquals, 3.0)
c.Check(heap.Pop(&q), utility.ValueEquals, 2.0)
c.Check(heap.Pop(&q), utility.ValueEquals, 1.0)
c.Check(heap.Pop(&q), utility.ValueEquals, 0.0)
}
示例8: DeleteDuplicates
// DeleteDuplicates heap sorts a slice and returns a new slice with duplicate
// entries removed.
func DeleteDuplicates(theArray []int) []int {
// Need to get a mutable copy of the heap
heapHelper := make(HeapHelper, len(theArray))
i := 0
for _, value := range theArray {
heapHelper[i] = value
i++
}
heap.Init(&heapHelper)
// How to do this in-place?
result := make([]int, 0)
if len(theArray) > 0 {
prevElement := heap.Pop(&heapHelper).(int)
result = append(result, prevElement)
for heapHelper.Len() > 0 {
currentElement := heap.Pop(&heapHelper).(int)
if currentElement != prevElement {
result = append(result, currentElement)
prevElement = currentElement
}
}
}
return result
}
示例9: createTreeFromFrequencies
func createTreeFromFrequencies(frequencies []uint, sizes_ []byte, ranks []byte) error {
// Create Huffman tree of (present) symbols
queue := make(HuffmanPriorityQueue, 0)
for i := range ranks {
heap.Push(&queue, &HuffmanNode{symbol: ranks[i], weight: frequencies[ranks[i]]})
}
for queue.Len() > 1 {
// Extract 2 minimum nodes, merge them and enqueue result
lNode := heap.Pop(&queue).(*HuffmanNode)
rNode := heap.Pop(&queue).(*HuffmanNode)
// Setting the symbol is critical to resolve ties during node sorting !
heap.Push(&queue, &HuffmanNode{weight: lNode.weight + rNode.weight, left: lNode, right: rNode, symbol: lNode.symbol})
}
rootNode := heap.Pop(&queue).(*HuffmanNode)
var err error
if len(ranks) == 1 {
sizes_[rootNode.symbol] = byte(1)
} else {
err = fillSizes(rootNode, 0, sizes_)
}
return err
}
示例10: findMin
func findMin(n, k, a, b, c, r int) int {
m := []int{a}
for i := 1; i < k; i++ {
m = append(m, (b*m[i-1]+c)%r)
}
o := make([]int, k)
copy(o, m)
sort.Ints(o)
h := &intHeap{}
heap.Init(h)
var x, y int
for i := 0; i <= k; {
if y >= k || x < o[y] {
heap.Push(h, x)
x++
i++
} else {
if x == o[y] {
x++
}
y++
}
}
for len(m)+1 < n {
p := heap.Pop(h).(int)
if h.notyet(m[len(m)-k]) && notagain(m[len(m)-k+1:len(m)], m[len(m)-k]) {
heap.Push(h, m[len(m)-k])
}
m = append(m, p)
}
return heap.Pop(h).(int)
}
示例11: TestPriorityQueue
func TestPriorityQueue(t *testing.T) {
pq := New()
heap.Init(pq)
heap.Push(pq, &Item{Value: "hello3", Priority: 3})
heap.Push(pq, &Item{Value: "hello1", Priority: 1})
heap.Push(pq, &Item{Value: "hello8", Priority: 8})
assert.Equal(t, 3+1+8, pq.PrioritySum())
item := pq.Peek()
assert.Equal(t, "hello8", item.(*Item).Value.(string))
item = pq.Peek()
assert.Equal(t, "hello8", item.(*Item).Value.(string))
item = heap.Pop(pq)
assert.Equal(t, "hello8", item.(*Item).Value.(string))
assert.Equal(t, 3+1, pq.PrioritySum())
item = heap.Pop(pq)
assert.Equal(t, "hello3", item.(*Item).Value.(string))
item = heap.Pop(pq)
assert.Equal(t, "hello1", item.(*Item).Value.(string))
assert.Equal(t, 0, pq.Len())
}
示例12: TestJobHeap
func TestJobHeap(t *testing.T) {
jobs := &JobHeap{}
heap.Init(jobs)
job1 := Job{Description: "job 1", Created: time.Now()}
job2 := Job{Description: "job 2", Created: time.Now()} //, Ctrl: JobControl{JobPriority: 100}}
job3 := Job{Description: "job 3", Created: time.Now()} //, Ctrl: JobControl{JobPriority: 104}}
heap.Push(jobs, &job2)
heap.Push(jobs, &job3)
heap.Push(jobs, &job1)
for _, job := range *jobs {
fmt.Println(job)
}
fmt.Println("===")
fmt.Println(jobs.Peek())
fmt.Println("---")
ret1 := heap.Pop(jobs)
ret2 := heap.Pop(jobs)
ret3 := heap.Pop(jobs)
fmt.Println(ret1)
fmt.Println(ret2)
fmt.Println(ret3)
}
示例13: TestEventQueue
func TestEventQueue(t *testing.T) {
queue := make(EventQueue, 0, 4)
heap.Push(&queue, &Event{Y: 5})
heap.Push(&queue, &Event{Y: 3})
heap.Push(&queue, &Event{Y: 7})
heap.Push(&queue, &Event{Y: 1})
var e *Event
e = heap.Pop(&queue).(*Event)
if e.Y != 7 {
t.Fatalf("Wanted priority 7, got %v", e.Y)
}
e = heap.Pop(&queue).(*Event)
if e.Y != 5 {
t.Fatalf("Wanted priority 5, got %v", e.Y)
}
e = heap.Pop(&queue).(*Event)
if e.Y != 3 {
t.Fatalf("Wanted priority 3, got %v", e.Y)
}
e = heap.Pop(&queue).(*Event)
if e.Y != 1 {
t.Fatalf("Wanted priority 1, got %v", e.Y)
}
}
示例14: addMinPathLeft
func addMinPathLeft(graph *m.Graph) {
dp := &m.DijkstraPrio{}
heap.Init(dp)
visited := make(map[*m.Node]bool)
endNode := graph.EndNode()
endNode.SetMinPathLeft(0)
visited[endNode] = true
for _, edge := range endNode.ToEdges() {
node := edge.From()
node.SetMinPathLeft(edge.FastestTime())
heap.Push(dp, node)
}
if dp.Len() > 0 {
for node := heap.Pop(dp).(*m.Node); dp.Len() > 0; node = heap.Pop(dp).(*m.Node) {
visited[node] = true
for _, edge := range node.ToEdges() {
innerNode := edge.From()
if !visited[innerNode] {
innerNode.SetMinPathLeft(edge.FastestTime() + node.MinPathLeft())
heap.Push(dp, innerNode)
}
}
}
}
}
示例15: ConsiderWeighted
// ConsiderWeighted lets the sample inspect a new value with a positive given
// weight. A weight of one corresponds to the unweighted reservoir sampling
// algorithm. A nonpositive weight will lead to the item being rejected without
// having been observed. To avoid numerical instabilities, it is advisable to
// stay away from zero and infinity, or more generally from regions in which
// computing x**1/weight may be ill-behaved.
func (rs *WeightedReservoirSample) ConsiderWeighted(value interface{}, weight float64) {
if weight <= 0 {
glog.Warningf("reservoir sample received non-positive weight %f", weight)
return
}
h := rs.Heap
wv := WeightedValue{
Value: value,
key: rs.makeKey(weight),
}
if h.Len() < rs.size {
heap.Push(h, wv)
if rs.threshold == 0 || wv.key < rs.threshold {
rs.threshold = wv.key
}
return
}
if wv.key > rs.threshold {
// Remove the element with threshold key.
heap.Pop(h)
// Add in the new element (which has a higher key).
heap.Push(h, wv)
// Update the threshold to reflect the new threshold.
twv := heap.Pop(h).(WeightedValue)
rs.threshold = twv.key
heap.Push(h, twv)
}
}