本文整理匯總了Golang中cmd/internal/ld.LSym.Next方法的典型用法代碼示例。如果您正苦於以下問題:Golang LSym.Next方法的具體用法?Golang LSym.Next怎麽用?Golang LSym.Next使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cmd/internal/ld.LSym
的用法示例。
在下文中一共展示了LSym.Next方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: gentext
func gentext() {
var s *ld.LSym
var stub *ld.LSym
var pprevtextp **ld.LSym
var r *ld.Reloc
var n string
var o1 uint32
var i int
// The ppc64 ABI PLT has similar concepts to other
// architectures, but is laid out quite differently. When we
// see an R_PPC64_REL24 relocation to a dynamic symbol
// (indicating that the call needs to go through the PLT), we
// generate up to three stubs and reserve a PLT slot.
//
// 1) The call site will be bl x; nop (where the relocation
// applies to the bl). We rewrite this to bl x_stub; ld
// r2,24(r1). The ld is necessary because x_stub will save
// r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
//
// 2) We reserve space for a pointer in the .plt section (once
// per referenced dynamic function). .plt is a data
// section filled solely by the dynamic linker (more like
// .plt.got on other architectures). Initially, the
// dynamic linker will fill each slot with a pointer to the
// corresponding [email protected] entry point.
//
// 3) We generate the "call stub" x_stub (once per dynamic
// function/object file pair). This saves the TOC in the
// TOC save slot, reads the function pointer from x's .plt
// slot and calls it like any other global entry point
// (including setting r12 to the function address).
//
// 4) We generate the "symbol resolver stub" [email protected] (once per
// dynamic function). This is solely a branch to the glink
// resolver stub.
//
// 5) We generate the glink resolver stub (only once). This
// computes which symbol resolver stub we came through and
// invokes the dynamic resolver via a pointer provided by
// the dynamic linker. This will patch up the .plt slot to
// point directly at the function so future calls go
// straight from the call stub to the real function, and
// then call the function.
// NOTE: It's possible we could make ppc64 closer to other
// architectures: ppc64's .plt is like .plt.got on other
// platforms and ppc64's .glink is like .plt on other
// platforms.
// Find all R_PPC64_REL24 relocations that reference dynamic
// imports. Reserve PLT entries for these symbols and
// generate call stubs. The call stubs need to live in .text,
// which is why we need to do this pass this early.
//
// This assumes "case 1" from the ABI, where the caller needs
// us to save and restore the TOC pointer.
pprevtextp = &ld.Ctxt.Textp
for s = *pprevtextp; s != nil; pprevtextp, s = &s.Next, s.Next {
for i = range s.R {
r = &s.R[i]
if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT {
continue
}
// Reserve PLT entry and generate symbol
// resolver
addpltsym(ld.Ctxt, r.Sym)
// Generate call stub
n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
stub = ld.Linklookup(ld.Ctxt, n, 0)
stub.Reachable = stub.Reachable || s.Reachable
if stub.Size == 0 {
// Need outer to resolve .TOC.
stub.Outer = s
// Link in to textp before s (we could
// do it after, but would have to skip
// the subsymbols)
*pprevtextp = stub
stub.Next = s
pprevtextp = &stub.Next
gencallstub(1, stub, r.Sym)
}
// Update the relocation to use the call stub
r.Sym = stub
// Restore TOC after bl. The compiler put a
// nop here for us to overwrite.
o1 = 0xe8410018 // ld r2,24(r1)
ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
}
}
}