本文整理匯總了Golang中cmd/internal/ld.Adduint64函數的典型用法代碼示例。如果您正苦於以下問題:Golang Adduint64函數的具體用法?Golang Adduint64怎麽用?Golang Adduint64使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了Adduint64函數的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: elfsetupplt
func elfsetupplt() {
plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
got := ld.Linklookup(ld.Ctxt, ".got.plt", 0)
if plt.Size == 0 {
// pushq got+8(IP)
ld.Adduint8(ld.Ctxt, plt, 0xff)
ld.Adduint8(ld.Ctxt, plt, 0x35)
ld.Addpcrelplus(ld.Ctxt, plt, got, 8)
// jmpq got+16(IP)
ld.Adduint8(ld.Ctxt, plt, 0xff)
ld.Adduint8(ld.Ctxt, plt, 0x25)
ld.Addpcrelplus(ld.Ctxt, plt, got, 16)
// nopl 0(AX)
ld.Adduint32(ld.Ctxt, plt, 0x00401f0f)
// assume got->size == 0 too
ld.Addaddrplus(ld.Ctxt, got, ld.Linklookup(ld.Ctxt, ".dynamic", 0), 0)
ld.Adduint64(ld.Ctxt, got, 0)
ld.Adduint64(ld.Ctxt, got, 0)
}
}
示例2: adddynsym
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
if s.Dynid >= 0 {
return
}
if ld.Iself {
s.Dynid = int32(ld.Nelfsym)
ld.Nelfsym++
d := ld.Linklookup(ctxt, ".dynsym", 0)
name := s.Extname
ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))
/* type */
t := ld.STB_GLOBAL << 4
if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
t |= ld.STT_FUNC
} else {
t |= ld.STT_OBJECT
}
ld.Adduint8(ctxt, d, uint8(t))
/* reserved */
ld.Adduint8(ctxt, d, 0)
/* section where symbol is defined */
if s.Type == ld.SDYNIMPORT {
ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
} else {
ld.Adduint16(ctxt, d, 1)
}
/* value */
if s.Type == ld.SDYNIMPORT {
ld.Adduint64(ctxt, d, 0)
} else {
ld.Addaddr(ctxt, d, s)
}
/* size of object */
ld.Adduint64(ctxt, d, uint64(s.Size))
if s.Cgoexport&ld.CgoExportDynamic == 0 && s.Dynimplib != "" && needlib(s.Dynimplib) != 0 {
ld.Elfwritedynent(ld.Linklookup(ctxt, ".dynamic", 0), ld.DT_NEEDED, uint64(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), s.Dynimplib)))
}
} else if ld.HEADTYPE == ld.Hdarwin {
ld.Diag("adddynsym: missed symbol %s (%s)", s.Name, s.Extname)
} else if ld.HEADTYPE == ld.Hwindows {
} else // already taken care of
{
ld.Diag("adddynsym: unsupported binary format")
}
}
示例3: adddynsym
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
if s.Dynid >= 0 {
return
}
if ld.Iself {
s.Dynid = int32(ld.Nelfsym)
ld.Nelfsym++
d := ld.Linklookup(ctxt, ".dynsym", 0)
name := s.Extname
ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))
/* type */
t := ld.STB_GLOBAL << 4
if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
t |= ld.STT_FUNC
} else {
t |= ld.STT_OBJECT
}
ld.Adduint8(ctxt, d, uint8(t))
/* reserved */
ld.Adduint8(ctxt, d, 0)
/* section where symbol is defined */
if s.Type == ld.SDYNIMPORT {
ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
} else {
ld.Adduint16(ctxt, d, 1)
}
/* value */
if s.Type == ld.SDYNIMPORT {
ld.Adduint64(ctxt, d, 0)
} else {
ld.Addaddr(ctxt, d, s)
}
/* size of object */
ld.Adduint64(ctxt, d, uint64(s.Size))
} else {
ld.Diag("adddynsym: unsupported binary format")
}
}
示例4: addpltsym
func addpltsym(ctxt *ld.Link, s *ld.LSym) {
if s.Plt >= 0 {
return
}
adddynsym(ctxt, s)
if ld.Iself {
plt := ld.Linklookup(ctxt, ".plt", 0)
rela := ld.Linklookup(ctxt, ".rela.plt", 0)
if plt.Size == 0 {
elfsetupplt()
}
// Create the glink resolver if necessary
glink := ensureglinkresolver()
// Write symbol resolver stub (just a branch to the
// glink resolver stub)
r := ld.Addrel(glink)
r.Sym = glink
r.Off = int32(glink.Size)
r.Siz = 4
r.Type = ld.R_CALLPOWER
ld.Adduint32(ctxt, glink, 0x48000000) // b .glink
// In the ppc64 ABI, the dynamic linker is responsible
// for writing the entire PLT. We just need to
// reserve 8 bytes for each PLT entry and generate a
// JMP_SLOT dynamic relocation for it.
//
// TODO(austin): ABI v1 is different
s.Plt = int32(plt.Size)
plt.Size += 8
ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt))
ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
ld.Adduint64(ctxt, rela, 0)
} else {
ld.Diag("addpltsym: unsupported binary format")
}
}
示例5: addgotsym
func addgotsym(s *ld.LSym) {
if s.Got >= 0 {
return
}
adddynsym(ld.Ctxt, s)
got := ld.Linklookup(ld.Ctxt, ".got", 0)
s.Got = int32(got.Size)
ld.Adduint64(ld.Ctxt, got, 0)
if ld.Iself {
rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
ld.Addaddrplus(ld.Ctxt, rela, got, int64(s.Got))
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_GLOB_DAT))
ld.Adduint64(ld.Ctxt, rela, 0)
} else if ld.HEADTYPE == ld.Hdarwin {
ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(s.Dynid))
} else {
ld.Diag("addgotsym: unsupported binary format")
}
}
示例6: adddynrel
//.........這裏部分代碼省略.........
s.P[r.Off-2] = 0x8d
r.Type = ld.R_PCREL
return
}
fallthrough
// fall through
case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1:
if targ.Type != ld.SDYNIMPORT {
ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
}
addgotsym(targ)
r.Type = ld.R_PCREL
r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
r.Add += int64(targ.Got)
return
}
// Handle references to ELF symbols from our own object files.
if targ.Type != ld.SDYNIMPORT {
return
}
switch r.Type {
case ld.R_CALL,
ld.R_PCREL:
if ld.HEADTYPE == ld.Hwindows {
// nothing to do, the relocation will be laid out in pereloc1
return
} else {
// for both ELF and Mach-O
addpltsym(targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Add = int64(targ.Plt)
return
}
case ld.R_ADDR:
if s.Type == ld.STEXT && ld.Iself {
// The code is asking for the address of an external
// function. We provide it with the address of the
// correspondent GOT symbol.
addgotsym(targ)
r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
r.Add += int64(targ.Got)
return
}
if s.Type != ld.SDATA {
break
}
if ld.Iself {
adddynsym(ld.Ctxt, targ)
rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
if r.Siz == 8 {
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64))
} else {
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32))
}
ld.Adduint64(ld.Ctxt, rela, uint64(r.Add))
r.Type = 256 // ignore during relocsym
return
}
if ld.HEADTYPE == ld.Hdarwin && s.Size == int64(ld.Thearch.Ptrsize) && r.Off == 0 {
// Mach-O relocations are a royal pain to lay out.
// They use a compact stateful bytecode representation
// that is too much bother to deal with.
// Instead, interpret the C declaration
// void *_Cvar_stderr = &stderr;
// as making _Cvar_stderr the name of a GOT entry
// for stderr. This is separate from the usual GOT entry,
// just in case the C code assigns to the variable,
// and of course it only works for single pointers,
// but we only need to support cgo and that's all it needs.
adddynsym(ld.Ctxt, targ)
got := ld.Linklookup(ld.Ctxt, ".got", 0)
s.Type = got.Type | ld.SSUB
s.Outer = got
s.Sub = got.Sub
got.Sub = s
s.Value = got.Size
ld.Adduint64(ld.Ctxt, got, 0)
ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(targ.Dynid))
r.Type = 256 // ignore during relocsym
return
}
if ld.HEADTYPE == ld.Hwindows {
// nothing to do, the relocation will be laid out in pereloc1
return
}
}
ld.Ctxt.Cursym = s
ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
}
示例7: adddynrela
func adddynrela(rela *ld.LSym, s *ld.LSym, r *ld.Reloc) {
ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
ld.Adduint64(ld.Ctxt, rela, ld.R_X86_64_RELATIVE)
ld.Addaddrplus(ld.Ctxt, rela, r.Sym, r.Add) // Addend
}
示例8: addpltsym
func addpltsym(s *ld.LSym) {
if s.Plt >= 0 {
return
}
adddynsym(ld.Ctxt, s)
if ld.Iself {
plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
got := ld.Linklookup(ld.Ctxt, ".got.plt", 0)
rela := ld.Linklookup(ld.Ctxt, ".rela.plt", 0)
if plt.Size == 0 {
elfsetupplt()
}
// jmpq *got+size(IP)
ld.Adduint8(ld.Ctxt, plt, 0xff)
ld.Adduint8(ld.Ctxt, plt, 0x25)
ld.Addpcrelplus(ld.Ctxt, plt, got, got.Size)
// add to got: pointer to current pos in plt
ld.Addaddrplus(ld.Ctxt, got, plt, plt.Size)
// pushq $x
ld.Adduint8(ld.Ctxt, plt, 0x68)
ld.Adduint32(ld.Ctxt, plt, uint32((got.Size-24-8)/8))
// jmpq .plt
ld.Adduint8(ld.Ctxt, plt, 0xe9)
ld.Adduint32(ld.Ctxt, plt, uint32(-(plt.Size + 4)))
// rela
ld.Addaddrplus(ld.Ctxt, rela, got, got.Size-8)
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_JMP_SLOT))
ld.Adduint64(ld.Ctxt, rela, 0)
s.Plt = int32(plt.Size - 16)
} else if ld.HEADTYPE == ld.Hdarwin {
// To do lazy symbol lookup right, we're supposed
// to tell the dynamic loader which library each
// symbol comes from and format the link info
// section just so. I'm too lazy (ha!) to do that
// so for now we'll just use non-lazy pointers,
// which don't need to be told which library to use.
//
// http://networkpx.blogspot.com/2009/09/about-lcdyldinfoonly-command.html
// has details about what we're avoiding.
addgotsym(s)
plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.plt", 0), uint32(s.Dynid))
// jmpq *got+size(IP)
s.Plt = int32(plt.Size)
ld.Adduint8(ld.Ctxt, plt, 0xff)
ld.Adduint8(ld.Ctxt, plt, 0x25)
ld.Addpcrelplus(ld.Ctxt, plt, ld.Linklookup(ld.Ctxt, ".got", 0), int64(s.Got))
} else {
ld.Diag("addpltsym: unsupported binary format")
}
}
示例9: adddynrel
func adddynrel(s *ld.LSym, r *ld.Reloc) {
targ := r.Sym
ld.Ctxt.Cursym = s
switch r.Type {
default:
if r.Type >= 256 {
ld.Diag("unexpected relocation type %d", r.Type)
return
}
// Handle relocations found in ELF object files.
case 256 + ld.R_PPC64_REL24:
r.Type = ld.R_CALLPOWER
// This is a local call, so the caller isn't setting
// up r12 and r2 is the same for the caller and
// callee. Hence, we need to go to the local entry
// point. (If we don't do this, the callee will try
// to use r12 to compute r2.)
r.Add += int64(r.Sym.Localentry) * 4
if targ.Type == ld.SDYNIMPORT {
// Should have been handled in elfsetupplt
ld.Diag("unexpected R_PPC64_REL24 for dyn import")
}
return
case 256 + ld.R_PPC64_ADDR64:
r.Type = ld.R_ADDR
if targ.Type == ld.SDYNIMPORT {
// These happen in .toc sections
adddynsym(ld.Ctxt, targ)
rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64))
ld.Adduint64(ld.Ctxt, rela, uint64(r.Add))
r.Type = 256 // ignore during relocsym
}
return
case 256 + ld.R_PPC64_TOC16:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_LO:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_LO
return
case 256 + ld.R_PPC64_TOC16_HA:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_HI:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_DS:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_LO_DS:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_DS
return
case 256 + ld.R_PPC64_REL16_LO:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_LO
r.Add += 2 // Compensate for relocation size of 2
return
case 256 + ld.R_PPC64_REL16_HI:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
r.Add += 2
return
case 256 + ld.R_PPC64_REL16_HA:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
r.Add += 2
return
}
// Handle references to ELF symbols from our own object files.
if targ.Type != ld.SDYNIMPORT {
return
}
// TODO(austin): Translate our relocations to ELF
//.........這裏部分代碼省略.........